R
?Rstudio
R
analyses in polished RMarkdown
filesR
resourcesR
R
installed
R
RStudio
RStudio
RStudio
Rstudio
environment by locating the following features:
Rstudio
by clicking the top left icon- open a new R script.RMarkdown
RMarkdown
R code
into descriptive files to keep your life organized
R chunks
into Rmarkdown
documentsknit
button to render markdown> "You know the greatest danger facing us is ourselves, an irrational fear of the unknown.
But there’s no such thing as the unknown — only things temporarily hidden, temporarily not understood."
>
> --- Captain James T. Kirk
“You know the greatest danger facing us is ourselves, an irrational fear of the unknown. But there’s no such thing as the unknown — only things temporarily hidden, temporarily not understood.”
— Captain James T. Kirk
-list_element
-sub_list_element #double tab to indent
-sub_list_element #double tab to indent
-sub_list_element #double tab to indent
-list_element
-sub_list_element #double tab to indent
# note the space after each dash- this is important!
RMarkdown
Files and Rmarkdown
AdvancedR
R
code chunks
in RMarkdown#
symbols[]
R
follows the normal priority of mathematical evaluation (PEDMAS)R
Input code chunk and then output
## [1] 16
Input code chunk and then output
## [1] 16
<-
operator (better than =
).R
is case sensitive.## [1] 6
## [1] 4
These do not work
## [1] 14
## [1] 144
## [1] 2.484907
log
- is a built-in function of R
, and therefore the object of the function needs to be put in parenthesesarguments
in the parentheses after the functionprint
command## [1] 67
## [1] 69022864
c
stands for concatenate
## [1] "I Love"
## [1] "Biostatistics"
## [1] "I Love" "Biostatistics"
R
thinks in terms of vectors
R
user to try to write scripts with that in mindc()
function and then entering the exact values with commas separating each element.## [1] 2 3 4 2 1 2 4 5 10 8 9
## [1] 5 6 7 5 4 5 7 8 13 11 12
x
is now what is called a list of character values (“I Love”).factors
, and we can redefine our character variables as factors.## [1] I Love
## Levels: I Love
R
“sees” a variable using str()
or class()
functions.## chr "I Love"
## [1] "character"
int
stands for integers
dbl
stands for doubles, or real numbers (or num
)
chr
stands for character vectors, or strings
dttm
stands for date-times (a date + a time)
lgl
stands for logical, vectors that contain only TRUE or FALSE
fctr
stands for factors, which R uses to represent categorical variables with fixed possible values
date
stands for dates
FALSE
TRUE
NA
which is ‘not available’ and is the default coding for missing data in R
R
numbers are doubles by default.NA
NaN
which is ‘not a number’Inf
-Inf
Many functions exist to operate on vectors.
mean(n)
median(n)
var(n)
log(n)
exp(n)
sqrt(n)
sum(n)
length(n)
sample(n, replace = T) #has an additional argument (replace=T)
??
from functions within packages).R
and it is easy enough to write your own functions if none already exist to do what you want to do.seq
sample
## [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
## [15] 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
## [29] 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1
## [43] 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5
## [57] 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9
## [71] 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3
## [85] 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7
## [99] 9.8 9.9 10.0
## [1] 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7
## [15] 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3
## [29] 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9
## [43] 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5
## [57] 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1
## [71] 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7
## [85] 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3
## [99] 0.2 0.1 0.0
## [1] 100.00 98.01 96.04 94.09 92.16 90.25 88.36 86.49 84.64 82.81
## [11] 81.00 79.21 77.44 75.69 73.96 72.25 70.56 68.89 67.24 65.61
## [21] 64.00 62.41 60.84 59.29 57.76 56.25 54.76 53.29 51.84 50.41
## [31] 49.00 47.61 46.24 44.89 43.56 42.25 40.96 39.69 38.44 37.21
## [41] 36.00 34.81 33.64 32.49 31.36 30.25 29.16 28.09 27.04 26.01
## [51] 25.00 24.01 23.04 22.09 21.16 20.25 19.36 18.49 17.64 16.81
## [61] 16.00 15.21 14.44 13.69 12.96 12.25 11.56 10.89 10.24 9.61
## [71] 9.00 8.41 7.84 7.29 6.76 6.25 5.76 5.29 4.84 4.41
## [81] 4.00 3.61 3.24 2.89 2.56 2.25 1.96 1.69 1.44 1.21
## [91] 1.00 0.81 0.64 0.49 0.36 0.25 0.16 0.09 0.04 0.01
## [101] 0.00
## [1] 100.00 98.01 96.04 94.09 92.16 90.25 88.36 86.49 84.64 82.81
## [11] 81.00 79.21 77.44 75.69 73.96 72.25 70.56 68.89 67.24 65.61
## [21] 64.00 62.41 60.84 59.29 57.76 56.25 54.76 53.29 51.84 50.41
## [31] 49.00 47.61 46.24 44.89 43.56 42.25 40.96 39.69 38.44 37.21
## [41] 36.00 34.81 33.64 32.49 31.36 30.25 29.16 28.09 27.04 26.01
## [51] 25.00 24.01 23.04 22.09 21.16 20.25 19.36 18.49 17.64 16.81
## [61] 16.00 15.21 14.44 13.69 12.96 12.25 11.56 10.89 10.24 9.61
## [71] 9.00 8.41 7.84 7.29 6.76 6.25 5.76 5.29 4.84 4.41
## [81] 4.00 3.61 3.24 2.89 2.56 2.25 1.96 1.69 1.44 1.21
## [91] 1.00 0.81 0.64 0.49 0.36 0.25 0.16 0.09 0.04 0.01
## [101] 0.00
Complete Exercises 1.4-1.7
dnorm()
generates the probability density, which can be plotted using the curve()
function.add=TRUE
R
FunctionsR
can guess what you mean because of order…## [1] 5.7478597 -14.7850405 0.7835355 -10.0918965 11.9909998
## [6] 2.2570687 15.9292746 3.9519431 -8.4260325 -4.0817148
R
and get something you really didn’t want…## [1] 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
R
Functions## [1] 6.869129 10.663631 5.367006 19.060287 10.631596 13.703436 5.277918
## [8] 4.030967 11.677516 7.926794
## [1] 6.869129 10.663631 5.367006 19.060287 10.631596 13.703436 5.277918
## [8] 4.030967 11.677516 7.926794
R
hist
function.plot
function (as well as a number of more sophisticated plotting functions).high level
plotting function, which sets the stageLow level
plotting functions will tweak the plots and make them beautifulpar(mfrow = c(2, 2))
plot(seq_1, xlab = "time", ylab = "p in population 1", type = "p",
col = "red")
plot(seq_2, xlab = "time", ylab = "p in population 2", type = "p",
col = "green")
plot(seq_square, xlab = "time", ylab = "p2 in population 2",
type = "p", col = "blue")
plot(seq_square_new, xlab = "time", ylab = "p in population 1",
type = "l", col = "yellow")
Complete Exercises 1.8-1.9
R
R
R
you can generate your own random data set drawn from nearly any distribution very easily.mydata <- data.frame(habitat, temp, elevation)
row.names(mydata) <- c("Reedy Lake", "Pearcadale", "Warneet",
"Cranbourne", "Lysterfield", "Red Hill", "Devilbend", "Olinda")
head(mydata)
## habitat temp elevation
## Reedy Lake mixed 3.4 0.0
## Pearcadale wet 3.4 9.2
## Warneet wet 8.4 3.8
## Cranbourne wet 3.0 5.0
## Lysterfield dry 5.6 5.6
## Red Hill dry 8.1 4.1
R
is being able to import data from an external source
R
.R
look in the PWD, whereas a full path can also be usedwrite.csv(YourFile, "yourfile.csv", quote = F, row.names = T,
sep = ",")
write.table(YourFile, "yourfile.txt", quote = F, row.names = T,
sep = "\t")
R
, that allows you to analyze just a subset of the data.Complete Exercises 1.10-1.11