Confident in confidence intervals?
Peter Ralph
6 October 2020 – Advanced Biological Statistics

t distribution reminder

Recall our AirBnB example:

```r
# Welch Two Sample t-test
# data: instant and not_instant
# t = 3.6482, df = 5039.8, p-value = 0.0002667
# alternative hypothesis: true difference in means is not equal to 0
# 95 percent confidence interval:
# 4.475555 14.872518
# sample estimates:
# mean of x mean of y
# 124.6409 114.9668
```
How's the \(t \) test work?

The central limit theorem.

In words:

The number of standard errors that the sample mean is away from the true mean has a \(t \) distribution.

\[
\text{standard error} = \frac{s}{\sqrt{n}} = \text{SD of the sample mean}
\]

\[
\text{... with } n - 2 \text{ degrees of freedom.}
\]

- "standard error" = \(s/\sqrt{n} \) = SD of the sample mean
In words:
The number of standard errors that the sample mean is away from the true mean has a \(t \) distribution.

- ... with \(n - 2 \) degrees of freedom.
- "standard error" = \(s / \sqrt{n} \) = SD of the sample mean

For instance, the probability that the sample mean is within 2 standard errors of the true mean is approximately

\[
\int_{-2}^{2} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\sqrt{(n-2)\pi}\Gamma\left(\frac{n-2}{2}\right)} \left(1 + \frac{x^2}{n-2}\right)^{-\frac{n-1}{2}} \, dx.
\]

For instance, the probability that the sample mean is within 2 standard errors of the true mean is approximately

\[
\int_{-2}^{2} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\sqrt{(n-2)\pi}\Gamma\left(\frac{n-2}{2}\right)} \left(1 + \frac{x^2}{n-2}\right)^{-\frac{n-1}{2}} \, dx.
\]
Intuition

1. Simulate a dataset of 20 random draws from a Normal distribution with mean 0, and do a t test of the hypothesis that $\mu = 0$.

2. Do that 1,000 times, and make a histogram of the resulting p-values. What proportion are less than 0.05?

3. Change mean of the simulated values to 1, and do the same.
A 95% confidence interval for an estimate is constructed so that no matter what the true values, 95% of the confidence intervals you construct will overlap the truth.

In other words, if we collect 100 independent samples from a population with true mean μ, and 95% construct confidence intervals for the mean from each, then about 95 of these should overlap μ.
How's that work?

\[\mu = \bar{x} + t \times \frac{s}{\sqrt{n}} \]

Check this.

If we collect 100 independent samples from a population with true mean \(\mu \), and construct 95% confidence intervals from each, then about 95 of these should overlap \(\mu \).

Let's take independent samples of size \(n = 20 \) from a Normal distribution with \(\mu = 0 \). Example:

```r
n <- 20; mu <- 0
rnorm(n, mean=mu)
#
## conf.int
## [1] -0.001083  0.556258
## attr(\'conf.level\')
## [1] 0.95
```
What's that 95% mean?

Suppose we survey 100 random UO students and find that 10 had been to a party recently and so get a 95% confidence interval of 4%-16% for the percentage of UO students who have been to a party recently.
What's that 95% mean?
Suppose we survey 100 random UO students and find that 10 had been
to a party recently and so get a 95% confidence interval of 4%-16% for
the percentage of UO students who have been to a party recently.

There is a 95% chance that the true proportion of UO
students who have been to a party recently is
between 4% and 16%.

Not so good: the true proportion is a fixed number, so it doesn't make
sense to talk about a probability here.
Statistical power is how good our statistics can find things out.

Formally: the probability of identifying a true effect.

Example: Suppose two snail species' speeds differ by 3cm/h. What's the chance our experiment will identify the difference?
A prospective study

Suppose that we’re going to do a survey of room prices of an AirBnB competitor. How do our power and accuracy depend on sample size? Supposing that prices roughly match AirBnB’s: mean $\mu = $120 and SD $\sigma = $98, estimate:

1. The size of the difference between the mean price of a random sample of size n and the (true) mean price.
2. The probability that a sample of size n rooms has a sample mean within 10 of the (true) mean price.

Group exercise

Answer those questions *empirically*: by taking random samples from the price column of the airbnb data, make two plots:

1. Expected difference between the mean price of a random sample of n Portland AirBnB rooms and the (true) mean price of all rooms, as a function of n.
2. Probability that a sample of size n of Portland AirBnB rooms has a sample mean within 10 of the (true) mean price of all rooms, as a function of n.

In class: part 1

```r
true_mean <- mean(airbnb$price, na.rm=TRUE)
# do it once
n <- 20
sample_mean <- mean(sample(airbnb$price, n))
# do it a lot of times
nvals <- 10 ^ 10:100
nreps <- 100
sample_means <- matrix(NA, nrow=nreps, ncol=length(nvals))
for (j in 1:length(nvals)) {
  n <- nvals[j]
  sample_means[,j] <- replicate(nreps, mean(sample(airbnb$price, n), na.rm=TRUE))
}
plot(nvals, colMeans(abs(sample_means - true_mean)),
  main="distance from the true mean, by sample size",
  xlab="sample size",
  ylab="mean absolute error",
  pch=20)
```
In class: part 2

```r
plot(nvals, colMeans(abs(sample_means - true_mean) < 10),
     xlab='sample size',
     ylab='Prob(error < 10)',
     main='probability sample mean is within $10$ of true mean',
     pch=20)
```