Peter Ralph
Advanced Biological Statistics
Let’s build a conceptual model for descriptive analysis of “mixture” expression data.
Data: expression data from tissue samples that consist of various mixtures of different cell types.
Goal: identify shared coexpression patterns corresponding to cell type.
Similar situations: identify different developmental stages from whole-organism expression; common community structures from metagenomic data.
Each cell type has a typical set of mean expression levels.
Each sample is composed of a mixture of cell types, defined by the proportions that come from each type.
Mean expression by cell type.
Cell type proportions by sample.
\(x_{kj}\) : Mean expression of gene \(j\) in cell type \(k\).
\(w_{ik}\) : Proportion of sample \(i\) of cell type \(k\).
\(Z_{ij}\) : expression level in sample \(i\) of gene \(j\).
\[\begin{aligned} Z_{ij} \approx \sum_{k=1}^K w_{ik} x_{kj} . \end{aligned}\]
We are decomposing \(Z\) into the product of two lower-dimensional, nonnegative factors:
\[\begin{aligned} Z_{ij} &\approx \sum_k w_{ik} x_{kj} \\ w_{ik} &\ge 0 \\ x_{kj} &\ge 0 . \end{aligned}\]
simple_nmf <- stan_model(model_code="
data {
int N; // samples
int L; // variables
int K; // factors
real Z[L,N];
}
parameters {
matrix<lower=0>[L,K] x;
matrix<lower=0>[K,N] w;
real<lower=0> sigma;
}
model {
for (j in 1:L) {
Z[j] ~ normal(x[j] * w, sigma);
}
}
")
PCA finds \(w\) and \(z\) to minimize \[\begin{aligned} \sum_{ij} \| Z_{ij} - \sum_k w_{ik} x_{kj} \|^2 . \end{aligned}\]
In other words, it is the maximum-likelihood solution to \[\begin{aligned} Z_{ij} &\sim \Normal(\sum_k w_{ik} x_{kj}, \sigma^2) . \end{aligned}\] (The eigenvectors are the columns of \(x\), and the eigenvectors are related to the size of \(w\) and \(x\).)
stan_pca <- stan_model(model_code="
data {
int N; // samples
int L; // variables
int K; // factors
real Z[L,N];
}
parameters {
matrix[L,K] x;
matrix[K,N] w;
real<lower=0> sigma;
}
model {
for (j in 1:L) {
Z[j] ~ normal(x[j] * w, sigma);
}
}
")
(note: needs some priors to work well; see here.)
A random set of \(k\) proportions \(0 \le P_i \le 1\) has a \(\Dirichlet(\alpha_1, \ldots, \alpha_k)\) if it has probability density \[\begin{aligned} \frac{1}{B(\alpha)} \prod_{i=1}^k p_i^{\alpha_i} \end{aligned}\] over the set of possible values \[\begin{aligned} P_1 + \cdots + P_k = 1 . \end{aligned}\]
This is useful as a prior on proportions.
The mean is \[ \left( \frac{\alpha_1}{\sum_j \alpha_j}, \frac{\alpha_2}{\sum_j \alpha_j}, \cdots, \frac{\alpha_k}{\sum_j \alpha_j} \right) . \]
This generalizes the Beta: if \(X \sim \Beta(a, b)\) then \((X, 1-X) \sim \Dirichlet(a, b)\).
Marginal distributions are Beta distributed: \(P_i \sim \Beta(\alpha_i, \sum_{j=1}^k \alpha_j - \alpha_i)\).
If \(X_i \sim \Gam(\text{shape}=\alpha_i)\), and \[\begin{aligned} P_i = X_i / \sum_{j=1}^k X_j \end{aligned}\] then \(P \sim \Dirichlet(\alpha)\).
“The \(k\)-simplex” is the set of proportions, i.e., nonnegative numbers \(p\) satisfying \[\begin{aligned} p_1 + \cdots p_k = 1 . \end{aligned}\]
parameters {
simplex[K] p;
}
model {
p ~ dirichlet(alpha);
}
# 1. Simulate 10,000 samples from the Dirichlet(20, 10, 3)
# distribution. (This should be a 10,000 x 3 matrix.)
alpha <- c(20, 10, 3)
P <- matrix(NA, nrow=10000, ncol=length(alpha))
for (i in 1:nrow(P)) {
X <- rgamma(3, shape=alpha)
P[i,] <- X / sum(X)
}
# Confirm that rows sum to 1.
stopifnot(all(
abs(rowSums(P) - 1) < 1e-15
))
# Confirm that columns have the correct means.
true_means <- alpha / sum(alpha)
rbind(true_means, colMeans(P))
## [,1] [,2] [,3]
## true_means 0.6060606 0.3030303 0.09090909
## 0.6049487 0.3045743 0.09047700
Each cell type has a typical set of mean expression levels.
Each sample is composed of a mixture of cell types, defined by the proportions that come from each type.
Mean expression levels differ between cell types for only some of the genes.
Mean expression by cell type.
Cell type proportions by sample.
\(x_{kj}\) : Mean expression of gene \(j\) in cell type \(k\).
\(w_{ik}\) : Proportion of sample \(i\) of cell type \(k\).
\(Z_{ij}\) : expression in sample \(i\) of gene \(j\).
\[\begin{aligned} Z_{ij} \approx \sum_{k=1}^K w_{ik} x_{kj} . \end{aligned}\]
Mean expression by cell type.
Cell type proportions by sample.
Mean expression levels differ between cell types for only some of the genes.
\(Z_{ij}\) : expression level in sample \(i\) of gene \(j\).
\[\begin{aligned} Z_{ij} \approx \sum_{k=1}^K w_{ik} x_{kj} . \end{aligned}\]
data {
int N; // # samples
int L; // # genes
int K; // # cell types
int Z[N,L];
}
parameters {
matrix<lower=0>[K,L] x;
vector<lower=0>[N] y;
vector<lower=0>[L] x_bar;
simplex[K] w[N];
real<lower=0> eta;
vector<lower=0>[K] alpha;
}
model {
matrix[N,L] mean_Z;
for (i in 1:N) {
for (j in 1:L) {
mean_Z[i,j] = 0.0;
for (k in 1:K) {
mean_Z[i,j] += y[i] * w[i][k] * x[k,j];
}
}
Z[i,] ~ poisson(mean_Z[i,]);
w[i] ~ dirichlet(alpha);
}
for (k in 1:K)
{ x[k,] ~ normal(x_bar, eta * x_bar); }
y ~ normal(0, 10);
alpha ~ exponential(1);
eta ~ normal(0, 4);
x_bar ~ gamma(0.5, 0.5e-4);
}
\(x_{kj}\) : Mean expression of gene \(j\) in cell type \(k\).
\(w_{ik}\) : Proportion of sample \(i\) of cell type \(k\).
\(y_{i}\) : Total sequencing depth of sample \(i\).
\[\begin{aligned} Z_{ij} \approx y_i \sum_k w_{ik} x_{kj} . \end{aligned}\]
sampling(nmf_model,
data=list(N=10,
L=5,
K=2,
Z=matrix(rpois(50, 100), ncol=5)),
chains=1, iter=100)
##
## SAMPLING FOR MODEL '64f2c322cbd474154082cded7e231b18' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 6.5e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.65 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: WARNING: There aren't enough warmup iterations to fit the
## Chain 1: three stages of adaptation as currently configured.
## Chain 1: Reducing each adaptation stage to 15%/75%/10% of
## Chain 1: the given number of warmup iterations:
## Chain 1: init_buffer = 7
## Chain 1: adapt_window = 38
## Chain 1: term_buffer = 5
## Chain 1:
## Chain 1: Iteration: 1 / 100 [ 1%] (Warmup)
## Chain 1: Iteration: 10 / 100 [ 10%] (Warmup)
## Chain 1: Iteration: 20 / 100 [ 20%] (Warmup)
## Chain 1: Iteration: 30 / 100 [ 30%] (Warmup)
## Chain 1: Iteration: 40 / 100 [ 40%] (Warmup)
## Chain 1: Iteration: 50 / 100 [ 50%] (Warmup)
## Chain 1: Iteration: 51 / 100 [ 51%] (Sampling)
## Chain 1: Iteration: 60 / 100 [ 60%] (Sampling)
## Chain 1: Iteration: 70 / 100 [ 70%] (Sampling)
## Chain 1: Iteration: 80 / 100 [ 80%] (Sampling)
## Chain 1: Iteration: 90 / 100 [ 90%] (Sampling)
## Chain 1: Iteration: 100 / 100 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.733825 seconds (Warm-up)
## Chain 1: 0.777809 seconds (Sampling)
## Chain 1: 1.51163 seconds (Total)
## Chain 1:
## Warning: There were 10 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.19, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#tail-ess
## Inference for Stan model: 64f2c322cbd474154082cded7e231b18.
## 1 chains, each with iter=100; warmup=50; thin=1;
## post-warmup draws per chain=50, total post-warmup draws=50.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## x[1,1] 11.71 0.42 2.99 7.34 9.44 11.54 13.10 18.57 51 0.98
## x[1,2] 12.97 0.64 3.75 7.92 9.85 12.83 14.45 20.34 34 1.03
## x[1,3] 12.92 0.61 4.01 8.04 10.03 12.07 14.52 22.77 43 1.00
## x[1,4] 13.18 0.64 4.16 8.10 10.28 12.37 14.47 24.46 42 0.98
## x[1,5] 12.35 0.50 3.35 7.64 9.59 12.27 13.82 20.19 45 1.01
## x[2,1] 12.21 0.53 3.50 6.75 9.46 11.54 14.40 19.29 44 1.01
## x[2,2] 12.81 0.50 3.46 8.21 10.37 12.22 13.89 21.59 48 0.99
## x[2,3] 13.18 0.51 3.54 8.43 10.43 12.89 14.75 19.74 49 1.01
## x[2,4] 13.20 0.57 3.69 8.30 10.61 12.61 15.17 20.07 42 1.00
## x[2,5] 12.33 0.48 3.46 7.85 9.79 11.71 14.15 19.39 52 1.00
## y[1] 8.34 0.28 2.12 5.08 6.86 8.07 9.81 11.94 56 1.01
## y[2] 7.97 0.24 2.01 4.70 6.55 7.80 9.13 12.40 68 0.99
## y[3] 8.01 0.25 1.98 4.96 6.72 7.78 9.45 11.89 61 1.03
## y[4] 8.03 0.28 2.08 4.88 6.68 7.67 9.29 12.15 57 1.02
## y[5] 7.83 0.26 2.06 4.63 6.42 7.61 9.17 11.60 63 1.02
## y[6] 8.81 0.29 2.24 5.13 7.47 8.47 10.32 13.47 60 1.01
## y[7] 8.18 0.26 2.12 4.90 6.63 8.15 9.66 11.74 67 1.00
## y[8] 8.55 0.27 2.10 5.16 7.27 8.06 9.99 12.99 62 0.99
## y[9] 8.42 0.26 2.13 5.16 6.80 8.14 9.92 12.59 66 1.00
## y[10] 8.37 0.25 2.19 5.07 6.89 8.28 9.96 12.44 79 1.00
## x_bar[1] 11.97 0.39 2.94 7.72 9.41 11.57 14.06 18.05 57 1.01
## x_bar[2] 13.23 0.75 3.72 8.16 10.28 12.62 14.48 21.59 25 1.02
## x_bar[3] 13.42 0.86 5.08 7.58 10.32 12.93 14.12 26.95 35 0.99
## x_bar[4] 13.30 0.55 3.71 8.53 10.67 12.94 15.09 22.59 46 1.00
## x_bar[5] 12.11 0.48 3.27 7.61 9.47 11.74 13.52 19.75 47 1.01
## w[1,1] 0.32 0.07 0.28 0.00 0.07 0.25 0.55 0.89 16 1.06
## w[1,2] 0.68 0.07 0.28 0.11 0.45 0.75 0.93 1.00 16 1.06
## w[2,1] 0.34 0.08 0.28 0.00 0.11 0.28 0.51 0.96 12 1.00
## w[2,2] 0.66 0.08 0.28 0.04 0.49 0.72 0.89 1.00 12 1.00
## w[3,1] 0.39 0.08 0.38 0.00 0.03 0.23 0.77 1.00 21 1.03
## w[3,2] 0.61 0.08 0.38 0.00 0.23 0.77 0.97 1.00 21 1.03
## w[4,1] 0.43 0.09 0.34 0.00 0.08 0.43 0.68 1.00 16 1.03
## w[4,2] 0.57 0.09 0.34 0.00 0.32 0.57 0.92 1.00 16 1.03
## w[5,1] 0.37 0.11 0.34 0.00 0.03 0.35 0.65 0.99 10 1.10
## w[5,2] 0.63 0.11 0.34 0.01 0.35 0.65 0.97 1.00 10 1.10
## w[6,1] 0.40 0.07 0.36 0.00 0.05 0.26 0.69 1.00 28 1.02
## w[6,2] 0.60 0.07 0.36 0.00 0.31 0.74 0.95 1.00 28 1.02
## w[7,1] 0.35 0.10 0.31 0.00 0.06 0.25 0.63 0.86 11 1.01
## w[7,2] 0.65 0.10 0.31 0.14 0.37 0.75 0.94 1.00 11 1.01
## w[8,1] 0.38 0.09 0.31 0.00 0.08 0.42 0.62 0.98 11 1.01
## w[8,2] 0.62 0.09 0.31 0.02 0.38 0.58 0.92 1.00 11 1.01
## w[9,1] 0.40 0.06 0.36 0.00 0.04 0.29 0.76 0.96 40 1.04
## w[9,2] 0.60 0.06 0.36 0.04 0.24 0.71 0.96 1.00 40 1.04
## w[10,1] 0.37 0.11 0.34 0.00 0.03 0.30 0.63 0.96 10 1.12
## w[10,2] 0.63 0.11 0.34 0.04 0.37 0.70 0.97 1.00 10 1.12
## eta 0.11 0.02 0.06 0.04 0.06 0.09 0.17 0.22 8 1.06
## alpha[1] 1.09 0.28 1.08 0.08 0.33 0.72 1.52 3.93 15 1.02
## alpha[2] 1.72 0.34 1.35 0.18 0.74 1.24 2.62 4.42 16 0.99
## lp__ 17637.53 3.40 9.23 17617.23 17633.66 17637.51 17643.56 17653.66 7 0.99
##
## Samples were drawn using NUTS(diag_e) at Thu Feb 24 15:16:48 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
How many cell types?
How many genes?
How many samples?
How much noise in expression?
How many genes distinguish cell types, and by how much relative to expression?
How much variation in mixture proportions?
How much variation in total coverage?
Expression parameters:
num_cell_types <- 5
num_genes <- 500
num_samples <- 100
mean_total_expression <- 50e6
sd_total_expression <- 5e6
num_diff_genes <- 180
gene_names <- paste0("gene_", apply(matrix(sample(letters, 5*num_genes, replace=TRUE), nrow=num_genes), 1, paste, collapse=''))
stopifnot(length(unique(gene_names)) == num_genes)
Mean expression profiles by cell type:
num_diff_genes
genes specific to each cell type# x[k,j] is mean expression of gene j in cell type k.
x <- matrix(0, nrow=num_cell_types, ncol=num_genes)
colnames(x) <- gene_names
# vector of typical expression levels across *all* cell types
x_mean <- rgamma(num_genes, shape=0.5, scale=20000)
# which genes are differentially expressed in which cell type
for (k in 1:num_cell_types) {
diffex <- sample.int(num_genes, num_diff_genes)
x[k,] <- x_mean
x[k,diffex] <- x[k,diffex] * 3 * runif(length(diffex))
}
Use gammas with shapes a vector of low integers; normalize to get Dirichlet.
# Z[i,j] is read counts of sample i for gene j
# this will have mean_Z[i,j] = (sum_k w[i,k] x[k,j])
mean_Z <- (w %*% x)
# but we want total sequencing to be y[i] so...
mean_Z <- y * mean_Z / rowSums(mean_Z)
stopifnot(all(abs(y - rowSums(mean_Z)) < 1e-8))
Z <- rpois(length(mean_Z), lambda=mean_Z)
dim(Z) <- dim(mean_Z)
Suppose instead that \(Z_{ij}\) is number of individuals of plant species \(j\) in a quadrat at spatial location \(i\), sampled in a transect across an environmental transition (e.g., up the Cascades).
Applying the same method, what are \(x_{ik}\) and \(w_{kj}\)?
Here’s the correlation matrix between inferred and true cell type proportions, \(w\):
opt_w <- fit_sim1$par[grepl("^w", names(fit_sim1$par))]
dim(opt_w) <- c(num_samples, num_cell_types)
cor(w, opt_w)
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.3650149 -0.46800709 0.01241053 0.9883737 -0.7094076
## [2,] -0.4649357 -0.68112510 0.98500504 -0.2470444 0.4452517
## [3,] 0.1109181 0.69846265 -0.23809420 -0.1459216 -0.2516304
## [4,] 0.9617917 0.09698111 -0.43534224 -0.2610371 -0.2615736
## [5,] -0.1944083 0.45636680 -0.39478167 -0.2909646 0.6459502
opt_w <- fit_sim2$par[grepl("^w", names(fit_sim2$par))]
dim(opt_w) <- c(num_samples, num_cell_types)
cor(w, opt_w)
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.2172411 -0.4078729 -0.6425219 0.01929908 0.94837974
## [2,] 0.1665108 -0.4485661 -0.6618148 0.94222156 -0.34250032
## [3,] -0.4188313 0.1169822 0.3839463 -0.04175999 -0.02495652
## [4,] -0.5288389 0.9550957 0.4536915 -0.38017185 -0.05111174
## [5,] 0.8598106 -0.1703489 0.5119214 -0.56631736 -0.45240318
optimizing package:rstan R Documentation
Obtain a point estimate by maximizing the joint posterior
Description:
Obtain a point estimate by maximizing the joint posterior from the
model defined by class ‘stanmodel’.
Usage:
## S4 method for signature 'stanmodel'
optimizing(object, data = list(),
seed = sample.int(.Machine$integer.max, 1), init = 'random',
check_data = TRUE, sample_file = NULL,
algorithm = c("LBFGS", "BFGS", "Newton"),
verbose = FALSE, hessian = FALSE, as_vector = TRUE,
draws = 0, constrained = TRUE, importance_resampling = FALSE, ...)
Arguments:
object: An object of class ‘stanmodel’.
data: A named ‘list’ or ‘environment’ providing the data for the
model or a character vector for all the names of objects used
as data. See the *Passing data to Stan* section in ‘stan’.
seed: The seed for random number generation. The default is
generated from 1 to the maximum integer supported by R on the
machine. Even if multiple chains are used, only one seed is
needed, with other chains having seeds derived from that of
the first chain to avoid dependent samples. When a seed is
specified by a number, ‘as.integer’ will be applied to it.
If ‘as.integer’ produces ‘NA’, the seed is generated
randomly. The seed can also be specified as a character
string of digits, such as ‘"12345"’, which is converted to
integer.
init: Initial values specification. See the detailed documentation
for the ‘init’ argument in ‘stan’ with one exception. If
specifying inits using a list then only a single named list
of values should be provided. For example, to initialize a
parameter ‘alpha’ to ‘value1’ and ‘beta’ to ‘value2’ you can
specify ‘list(alpha = value1, beta = value2)’.
Too slow.
?nmf in r
Well, there’s the RcppML package?
install.packages('RcppML')
It’s got great documentation: that’s very reasurring!
##
## iter | tol
## ---------------
## 1 | 8.51e-01
## 2 | 5.63e-02
## 3 | 8.28e-03
## 4 | 2.21e-03
## 5 | 9.61e-04
## 6 | 5.98e-04
## 7 | 4.40e-04
## 8 | 3.41e-04
## 9 | 2.69e-04
## 10 | 2.09e-04
## 11 | 1.61e-04
## 12 | 1.22e-04
## 13 | 9.31e-05
It works just as well - maybe a bit better?
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.2330194 0.97158136 -0.2830714 -0.4389302 -0.1194442
## [2,] -0.3175350 -0.34415247 0.1480907 0.9398846 -0.3668171
## [3,] -0.1844490 -0.58272410 -0.3638424 0.2049184 0.8452016
## [4,] 0.9860517 -0.06099348 -0.1947311 -0.2987144 -0.3999482
## [5,] -0.4224679 -0.34921183 0.7949414 -0.3476999 0.4241365