\[ %% % Add your macros here; they'll be included in pdf and html output. %% \newcommand{\R}{\mathbb{R}} % reals \newcommand{\E}{\mathbb{E}} % expectation \renewcommand{\P}{\mathbb{P}} % probability \DeclareMathOperator{\logit}{logit} \DeclareMathOperator{\logistic}{logistic} \DeclareMathOperator{\SE}{SE} \DeclareMathOperator{\sd}{sd} \DeclareMathOperator{\var}{var} \DeclareMathOperator{\cov}{cov} \DeclareMathOperator{\cor}{cor} \DeclareMathOperator{\Normal}{Normal} \DeclareMathOperator{\LogNormal}{logNormal} \DeclareMathOperator{\Poisson}{Poisson} \DeclareMathOperator{\Beta}{Beta} \DeclareMathOperator{\Binom}{Binomial} \DeclareMathOperator{\Gam}{Gamma} \DeclareMathOperator{\Exp}{Exponential} \DeclareMathOperator{\Cauchy}{Cauchy} \DeclareMathOperator{\Unif}{Unif} \DeclareMathOperator{\Dirichlet}{Dirichlet} \DeclareMathOperator{\Wishart}{Wishart} \DeclareMathOperator{\StudentsT}{StudentsT} \DeclareMathOperator{\Weibull}{Weibull} \newcommand{\given}{\;\vert\;} \]

the Weibull distribution

Peter Ralph

5 January 2021 – Advanced Biological Statistics

Stochastic minute: Weibull

The Weibull distribution

If \(T\) has a Weibull distribution, with scale \(\lambda\) and shape \(k\), then

  • \(T \ge 0\)
  • \(\P\{ T > t \} = \exp\left(- (t/\lambda)^k \right)\)
  • the mean is proportional to the scale: \(\E[T] = \lambda \times \Gamma(1 + 1/k)\)

It is mostly used in survival analysis, because its hazard rate is: \[\begin{aligned} h(t) = k \frac{1}{\lambda} \left(\frac{t}{\lambda}\right)^{k-1} . \end{aligned}\] which allows rates to go down (\(k<1\)), up (\(k>1\)), or stay flat (\(k=1\)) over time.

plot of chunk r plot_wei

Examples:

  • Time until arrival of cosmic particles: constant hazard rate, so shape = 1.

  • Heights of trees hit by lightning: hazard rate is higher for taller trees, so shape > 1.

  • Lifetime of iphones: some phones have faulty manufacturing, so will fail soon, but if not then they’ll probably last longer - decreasing hazard rate, so shape < 1.

// reveal.js plugins