\[ %% % Add your macros here; they'll be included in pdf and html output. %% \newcommand{\R}{\mathbb{R}} % reals \newcommand{\E}{\mathbb{E}} % expectation \renewcommand{\P}{\mathbb{P}} % probability \DeclareMathOperator{\logit}{logit} \DeclareMathOperator{\logistic}{logistic} \DeclareMathOperator{\SE}{SE} \DeclareMathOperator{\sd}{sd} \DeclareMathOperator{\var}{var} \DeclareMathOperator{\cov}{cov} \DeclareMathOperator{\cor}{cor} \DeclareMathOperator{\Normal}{Normal} \DeclareMathOperator{\LogNormal}{logNormal} \DeclareMathOperator{\Poisson}{Poisson} \DeclareMathOperator{\Beta}{Beta} \DeclareMathOperator{\Binom}{Binomial} \DeclareMathOperator{\Gam}{Gamma} \DeclareMathOperator{\Exp}{Exponential} \DeclareMathOperator{\Cauchy}{Cauchy} \DeclareMathOperator{\Unif}{Unif} \DeclareMathOperator{\Dirichlet}{Dirichlet} \DeclareMathOperator{\Wishart}{Wishart} \DeclareMathOperator{\StudentsT}{StudentsT} \DeclareMathOperator{\Weibull}{Weibull} \newcommand{\given}{\;\vert\;} \]

Exponential and Gamma distributions

Peter Ralph

24 November 2020 – Advanced Biological Statistics

Stochastic minute

Exponential, and Gamma

If \(T \sim \Exp(\text{rate}=\lambda)\), then

\[\begin{aligned} \P\{ T \in dt \} = \lambda e^{-\lambda t} dt . \end{aligned}\]

  1. \(T\) can be any nonnegative real number.

  2. \(T\) is memoryless: \[\begin{aligned} \P\{ T > x + y \given T > x \} = \P\{ T > y \} . \end{aligned}\]

  3. A machine produces \(n\) widgets per second; each widget has probability \(\lambda/n\) of being broken. The time until the first broken widget appears (in seconds) is approximately \(\sim \Exp(\lambda)\).

If \(S \sim \Gam(\text{shape}=\alpha, \text{rate}=\lambda)\), then

\[\begin{aligned} \P\{ S \in dt \} = \frac{\alpha^\lambda}{\Gamma(\alpha)} t^{\alpha - 1} e^{-\lambda t} dt . \end{aligned}\]

  1. \(S\) has mean \(\alpha \lambda\) and variance \(\alpha/\lambda^2\).

  2. If \(T_1, \ldots, T_k\) are independent \(\Exp(\lambda)\), then \(S = T_1 + \cdots + T_k\) is \(\Gam(k, \lambda)\).

  3. A machine produces \(n\) widgets per second; each widget has probability \(\lambda/n\) of being broken. The time until the \(k^\text{th}\) broken widget appears (in seconds) is approximately \(\sim \Gam(k, \lambda)\).

// reveal.js plugins