\[ %% % Add your macros here; they'll be included in pdf and html output. %% \newcommand{\R}{\mathbb{R}} % reals \newcommand{\E}{\mathbb{E}} % expectation \renewcommand{\P}{\mathbb{P}} % probability \DeclareMathOperator{\logit}{logit} \DeclareMathOperator{\logistic}{logistic} \DeclareMathOperator{\sd}{sd} \DeclareMathOperator{\var}{var} \DeclareMathOperator{\cov}{cov} \DeclareMathOperator{\Normal}{Normal} \DeclareMathOperator{\Poisson}{Poisson} \DeclareMathOperator{\Beta}{Beta} \DeclareMathOperator{\Binom}{Binomial} \DeclareMathOperator{\Gam}{Gamma} \DeclareMathOperator{\Exp}{Exponential} \DeclareMathOperator{\Cauchy}{Cauchy} \DeclareMathOperator{\Unif}{Unif} \DeclareMathOperator{\Dirichlet}{Dirichlet} \DeclareMathOperator{\Wishart}{Wishart} \DeclareMathOperator{\StudentsT}{StudentsT} \newcommand{\given}{\;\vert\;} \]

GLMs and Poisson regression

Peter Ralph

26 November 2019 – Advanced Biological Statistics

Math minute: matrix multiplication

To simulate from: \[\begin{aligned} \mu_i &= b_0 + b_1 X_{i1} + \cdots + b_k X_{ik} \\ Y_i &\sim \Normal(\mu_i, \sigma) . \end{aligned}\]

either

To simulate from: \[\begin{aligned} \mu_i &= b_0 + b_1 X_{i1} + \cdots + b_k X_{i1} \\ Y_i &\sim \Normal(\mu_i, \sigma) . \end{aligned}\]

of

Because

In R, %*% is matrix multiplication: if

  • \(b\) is a \(k\)-vector
  • \(X\) is an \(n \times k\) matrix

then X %*% b (or, \(X b\) in math notation) is shorthand for the \(n\)-vector \[ (Xb)_i = \sum_{j=1}^k X_{ij} b_j . \]

In Stan, matrix multiplication is *.

A note on impostor syndrome

Generalized Linear Models

Ingredients of a GLM:

  1. A probability distribution, \(Y\).

(the “family”; describes the output)

  1. A linear predictor, \(X \beta\).

(connects input to output)

  1. A link function (usually, \(h(\E[Y]) = X\beta\)).

(connects linear predictor to probability distribution)

Common choices:

  • Linear regression: \[ Y \sim \Normal(X \beta, \sigma) .\]

  • Logistic regression: \[ Y \sim \Binom(n, \logistic(X\beta)) .\]

  • Gamma regression: \[ Y \sim \Gam(\text{scale}=\exp(X\beta)/k, \text{shape}=k) .\]

Logistic regression, in R

glm(y ~ x, family=binomial)
family {stats}

Family objects provide a convenient way to specify the details of the models
used by functions such as glm.

binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")

Arguments

link: a specification for the model link function. This can be a
name/expression, a literal character string, a length-one character vector, or
an object of class "link-glm" (such as generated by make.link) provided it is
not specified via one of the standard names given next.

The gaussian family accepts the links (as names) identity, log and inverse; the
binomial family the links logit, probit, cauchit, (corresponding to logistic,
normal and Cauchy CDFs respectively) log and cloglog (complementary log-log);
the Gamma family the links inverse, identity and log; the poisson family the
links log, identity, and sqrt; and the inverse.gaussian family the links
1/mu^2, inverse, identity and log.

Note that the link function is the inverse of what we’d write down in the model: for instance, if the mean of the response is the exponential of the linear predictor, i.e., if \[ \E[Y] = \exp(X\beta) . \] then we have

link = "log"

Other inverses:

  • logistic has inverse logit
  • identity has inverse identity
  • x^2 (“squared”) has inverse sqrt

Unpacking logistic regression

Simulate data

100 trials, where probability of success depends on \(x\):

plot of chunk sim_logistic

glm()

## 
## Call:
## glm(formula = zz ~ x, family = "binomial")
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.21167  -0.07659  -0.00864   0.16365   2.72105  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -11.3818     3.0318  -3.754 0.000174 ***
## x             1.9278     0.4963   3.884 0.000103 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 133.750  on 99  degrees of freedom
## Residual deviance:  37.267  on 98  degrees of freedom
## AIC: 41.267
## 
## Number of Fisher Scoring iterations: 8

Stan

Stan: fit the model

##             mean    se_mean        sd      2.5%        25%        50%        75%      97.5%    n_eff     Rhat
## alpha -12.579330 0.12448956 3.2416087 -20.08699 -14.562301 -12.263318 -10.229706  -7.121727 678.0401 1.001617
## beta    2.123924 0.02026774 0.5305953   1.22808   1.736981   2.071771   2.442721   3.340106 685.3559 1.001303
## lp__  -19.641846 0.03384329 1.0367456 -22.47400 -20.010380 -19.311850 -18.917676 -18.658669 938.4245 1.003825

Stan: posterior distributions

plot of chunk plot_stan_logistic

Identify the GLM

data {
  int N;
  vector[N] X;
  vector[N] Y;
  vector<lower=0> Z[N];
}
parameters {
  real beta[2];
}
model {
  Z ~ gamma(1, exp(- beta[1] * X - beta[2] * Y));
}

What is

  1. the probability distribution? (describes the output)

  2. the linear predictor? (connects input to output)

  3. the link function? (connects linear predictor to probability distribution)

Then, simulate from it.

in class

## 
## Call:
## glm(formula = Z ~ XY[, "X"] + XY[, "Y"], family = Gamma(link = "log"))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.3130  -0.9182  -0.3895   0.3900   1.7129  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.10181    0.09629   1.057    0.293    
## XY[, "X"]   -2.03873    0.10828 -18.829   <2e-16 ***
## XY[, "Y"]    3.00499    0.09137  32.888   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Gamma family taken to be 0.9192264)
## 
##     Null deviance: 1151.41  on 99  degrees of freedom
## Residual deviance:  126.36  on 97  degrees of freedom
## AIC: 233.01
## 
## Number of Fisher Scoring iterations: 8

plot of chunk siminclass

Stochastic minute

The Poisson distribution

If \(N \sim \Poisson(\mu)\) then \(N \ge 0\) and \[\begin{aligned} \P\{N = k\} = \frac{\mu^k}{k!} e^{-\mu} \end{aligned}\]

  • \(N\) is a nonnegative integer (i.e., a count)

  • \(\E[N] = \var[N] = \mu\)

  • If a machine makes widgets very fast, producing on average one broken widget per minute (and many good ones), each breaking independent of the others, then the number of broken widgets in \(\mu\) minutes is \(\Poisson(\mu)\).

  • If busses arrive randomly every \(\Exp(1)\) minutes, then the number of busses to arrive in \(\mu\) minutes is \(\Poisson(\mu)\).

Count data

A hypothetical situation:

  1. We have counts of transcript numbers,

  2. from some individuals of different ages and past exposures to solar irradiation,

  3. of two genotypes.

Model:

  • Counts are Poisson,

  • with mean that depends on age and exposure,

  • but effect of exposure depends on genotype.

  1. Counts are Poisson,

  2. with mean that depends on age and exposure,

  3. but effect of exposure depends on genotype.

\[\begin{aligned} Z_i &\sim \Poisson(\mu_i) \\ \end{aligned}\]

  1. Counts are Poisson,

  2. with mean that depends on age and exposure,

  3. but effect of exposure depends on genotype.

\[\begin{aligned} Z_i &\sim \Poisson(\mu_i) \\ \mu_i &= a + b \times \text{age}_i + c \times \text{exposure}_i \end{aligned}\]

  1. Counts are Poisson,

  2. with mean that depends on age and exposure,

  3. but effect of exposure depends on genotype.

\[\begin{aligned} Z_i &\sim \Poisson(\mu_i) \\ \mu_i &= \exp\left( a_{g_i} + b \times \text{age}_i + c_{g_i} \times \text{exposure}_i \right) \end{aligned}\]

Poisson regression, in practice

The data

plot of chunk plot_counts

Your turn: use glm( )

\[\begin{aligned} Z_i &\sim \Poisson(\mu_i) \\ \mu_i &= \exp\left( a_{g_i} + b \times \text{age}_i + c_{g_i} \times \text{exposure}_i \right) \end{aligned}\]

Here are the data:

##   genotype       age    exposure counts
## 1        1 32.002416  0.08573067     12
## 2        1 31.946713  3.34821235      0
## 3        2  9.937669  1.14303355      8
## 4        2 26.423782 27.50630521      0
## 5        1 41.199082  2.97643962      2
## 6        1  6.613676  0.62972565      0

Write a Stan block

  1. Counts are Poisson,

  2. with mean that depends on age and exposure,

  3. but effect of exposure depends on genotype.

\[\begin{aligned} Z_i &\sim \Poisson(y_i) \\ y_i &= \exp(a_{g_i} + b \times \text{age}_i \\ &\qquad {} + c_{g_i} \times \text{exposure}_i ) \end{aligned}\]

data {
    int N;
    int counts[N];
    vector[N] age;
    vector[N] exposure;
    int genotype[N];
    int ngeno;
}
parameters {
    real a[ngeno]; // intercepts
    real b; // slope for age
    real c[ngeno]; // slopes for exposure
}
model {
    vector[N] y; // means
    y = exp(a[genotype] + b .* age + c[genotype] .* exposure);
    counts ~ poisson(y);
    // implicitly flat priors
}

The result

Note: scaling the data helps Stan find the right scale to move on.

## Inference for Stan model: simple_poisson.
## 3 chains, each with iter=1000; warmup=500; thin=1; 
## post-warmup draws per chain=500, total post-warmup draws=1500.
## 
##          mean se_mean   sd     2.5%      25%      50%      75%    97.5% n_eff Rhat
## a[1]     2.13    0.00 0.02     2.09     2.12     2.13     2.15     2.17  1324 1.00
## a[2]     1.73    0.00 0.03     1.67     1.71     1.73     1.75     1.78  1009 1.00
## b        0.82    0.00 0.01     0.80     0.82     0.82     0.83     0.84  1304 1.00
## c[1]     0.10    0.00 0.01     0.08     0.09     0.10     0.11     0.12  1492 1.00
## c[2]    -0.70    0.00 0.03    -0.76    -0.72    -0.70    -0.67    -0.63  1217 1.00
## lp__ 12164.36    0.06 1.62 12160.26 12163.55 12164.70 12165.58 12166.45   748 1.01
## 
## Samples were drawn using NUTS(diag_e) at Mon Nov 25 21:24:14 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

plot of chunk not_warmup

How’d we do?

Here are posterior distributions of the parameters, with the true values in red. plot of chunk true_fit_1

What happened?

Goodness of fit

Posterior predictive simulations

Let’s simulate up data under this model to check for goodness of fit.

We expect to not see a good fit. (Why?)

100 datasets from the posterior distribution

True data are overdispersed relative to our simulations

plot of chunk plot_post_sims1

Stan interlude

The important program blocks

data {
    // what we know: the input
    // declarations only
}
parameters {
    // what we want to know about:
    // defines the space Stan random walks in
    // declarations only
}
model {
    // stuff to calculate the priors and the likelihoods
    // happens every step
}

The program blocks

functions {
    // user-defined functions
}
data {
    // what we know: the input
    // declarations only
}
transformed data {
    // calculations to do once, at the start
}
parameters {
    // what we want to know about:
    // defines the space Stan random walks in
    // declarations only
}
transformed parameters {
    // other things that we want the posterior distribution of
    // happens every step
}
model {
    // stuff to calculate the priors and the likelihoods
    // happens every step
}
generated quantities {
    // more things we want the posterior distribution of
    // but that don't affect the random walk
}

On priors

Under the hood,

    z ~ poisson(mu);

is equivalent to

    target += poisson_lpdf(z | mu);

(lpdf = log posterior density function).

So, if you don’t put a prior on something, it implicitly has a uniform prior (i.e., a flat prior).

Error messages

These are important. Pay attention to them, and fix the problems.

Run code in the console. Rstudio often hides useful information.

Parameterization matters

More on this later.

Including overdispersion

How can we include overdispersion?

  1. Counts are Poisson,

  2. with mean that depends on age and exposure,

  3. but effect of exposure depends on genotype.

  4. Actually, counts are overdispersed, so make the means random, and lognormally distributed.

\[\begin{aligned} Z_i &\sim \Poisson(\mu_i) \\ \mu_i &= \exp\left( a_{g_i} + b \times \text{age}_i + c_{g_i} \times \text{exposure}_i \right) \end{aligned}\]

  1. Counts are Poisson,

  2. with mean that depends on age and exposure,

  3. but effect of exposure depends on genotype.

  4. Actually, counts are overdispersed, so the means are random, and lognormally distributed.

\[\begin{aligned} Z_i &\sim \Poisson(\mu_i) \\ \mu_i &= \exp(W_i) \\ W_i &\sim \Normal(y_i, \sigma) \\ y_i &= a_{g_i} + b \times \text{age}_i + c_{g_i} \times \text{exposure}_i \end{aligned}\]

  1. Counts are Poisson,

  2. with mean that depends on age and exposure,

  3. but effect of exposure depends on genotype.

  4. Actually, counts are overdispersed, so the means are random, and lognormally distributed.

\[\begin{aligned} Z_i &\sim \Poisson(\mu_i) \\ \mu_i &\sim \log\Normal(y_i, \sigma) \\ y_i &= a_{g_i} + b \times \text{age}_i + c_{g_i} \times \text{exposure}_i \end{aligned}\]

Add overdispersion

\[\begin{aligned} Z_i &\sim \Poisson(\mu_i) \\ \mu_i &\sim \log\Normal(y_i, \sigma) \\ y_i &= a_{g_i} + b \times \text{age}_i \\ &\qquad {} + c_{g_i} \times \text{exposure}_i \end{aligned}\]

overdispersed_model <- stan_model(model_code="
data {
    int N; // number of data points
    vector[N] age;
    vector[N] exposure;
    int counts[N];
    int genotype[N];
    int ngenotypes;
}
parameters {
    vector[ngenotypes] a; // intercepts
    real b; // slope for age
    vector[ngenotypes] c; // slopes for exposure
    real<lower=0> sigma; // SD on lognormal
    vector[N] mu; // mean of the poissons
}
model {
    vector[N] y; // mean of the lognormals
    y = a[genotype] + b * age + c[genotype] .* exposure;
    mu ~ lognormal(y, sigma);
    counts ~ poisson(mu);
    a ~ normal(0, 100);
    b ~ normal(0, 10);
    c ~ normal(0, 20);
    sigma ~ normal(0, 10);
}")
## Inference for Stan model: lognormal_poisson.
## 3 chains, each with iter=1000; warmup=500; thin=1; 
## post-warmup draws per chain=500, total post-warmup draws=1500.
## 
##             mean se_mean    sd     2.5%      25%      50%      75%    97.5% n_eff Rhat
## mu[1]      11.28    0.05  3.20     5.92     8.99    10.91    13.28    18.41  3883 1.00
## mu[2]       1.37    0.02  0.92     0.26     0.73     1.18     1.78     3.73  2732 1.00
## mu[3]       6.94    0.04  2.45     3.03     5.15     6.64     8.46    12.27  3678 1.00
## mu[4]       0.25    0.01  0.30     0.02     0.09     0.16     0.31     1.01  1413 1.00
## mu[5]       3.01    0.03  1.55     0.85     1.89     2.72     3.84     6.82  2707 1.00
## mu[6]       0.81    0.02  0.66     0.11     0.35     0.60     1.11     2.51  1659 1.00
## mu[7]       9.86    0.06  3.09     4.87     7.68     9.47    11.63    17.04  2644 1.00
## mu[8]       5.52    0.04  2.22     2.22     3.87     5.14     6.93    10.55  3025 1.00
## mu[9]       0.73    0.01  0.60     0.09     0.32     0.56     0.95     2.19  1946 1.00
## mu[10]      5.54    0.04  2.13     2.25     4.06     5.24     6.68    10.48  2567 1.00
## mu[11]      2.04    0.02  1.16     0.48     1.20     1.81     2.68     4.78  2993 1.00
## mu[12]    100.31    0.14  9.75    82.34    93.40   100.12   106.68   120.04  4764 1.00
## mu[13]      1.46    0.02  0.93     0.32     0.79     1.25     1.88     3.85  2678 1.00
## mu[14]      1.55    0.01  1.01     0.28     0.85     1.34     2.02     4.01  4665 1.00
## mu[15]      1.18    0.02  0.86     0.21     0.57     0.96     1.55     3.39  2574 1.00
## mu[16]      7.95    0.05  2.59     3.79     6.09     7.67     9.50    13.84  3248 1.00
## mu[17]      7.41    0.04  2.35     3.36     5.76     7.24     8.77    12.86  3717 1.00
## mu[18]     37.26    0.11  5.97    26.47    33.02    37.00    41.04    49.51  2825 1.00
## mu[19]      5.91    0.05  2.29     2.39     4.27     5.66     7.26    11.08  2442 1.00
## mu[20]      2.44    0.02  1.24     0.73     1.55     2.22     3.08     5.49  3713 1.00
## mu[21]      1.26    0.02  0.90     0.21     0.63     1.04     1.64     3.52  2604 1.00
## mu[22]      0.88    0.01  0.69     0.12     0.40     0.69     1.17     2.65  2117 1.00
## mu[23]     15.97    0.07  4.13     8.84    13.09    15.49    18.39    25.53  3278 1.00
## mu[24]    240.01    0.22 14.98   211.44   230.30   239.73   249.89   270.95  4461 1.00
## mu[25]      3.84    0.03  1.69     1.25     2.63     3.63     4.73     7.64  3592 1.00
## mu[26]    572.81    0.36 22.26   532.12   557.31   572.51   587.54   615.86  3915 1.00
## mu[27]     16.66    0.07  3.97     9.62    13.99    16.43    19.03    25.48  3574 1.00
## mu[28]      3.63    0.03  1.65     1.15     2.46     3.36     4.45     7.66  3511 1.00
## mu[29]     13.27    0.06  3.53     7.37    10.66    12.99    15.56    20.83  3442 1.00
## mu[30]      0.90    0.01  0.72     0.14     0.42     0.71     1.17     2.73  2481 1.00
## mu[31]      1.57    0.02  1.01     0.32     0.82     1.32     2.09     4.22  2510 1.00
## mu[32]      8.25    0.05  2.65     4.00     6.29     7.89     9.93    14.12  2589 1.00
## mu[33]      4.37    0.04  1.88     1.51     3.01     4.10     5.45     8.74  2850 1.00
## mu[34]      2.51    0.02  1.36     0.62     1.54     2.25     3.20     5.98  3095 1.00
## mu[35]      2.10    0.02  1.20     0.47     1.26     1.88     2.68     5.11  2809 1.00
## mu[36]     78.98    0.14  9.02    62.34    72.58    78.75    84.82    97.59  4006 1.00
## mu[37]      8.36    0.05  2.72     4.06     6.31     8.11    10.05    14.60  2941 1.00
## mu[38]     82.82    0.15  9.40    65.82    76.38    82.40    88.89   102.15  4040 1.00
## mu[39]      0.77    0.01  0.60     0.12     0.36     0.62     1.02     2.40  1656 1.00
## mu[40]      1.98    0.02  1.17     0.47     1.09     1.73     2.60     4.89  2828 1.00
## mu[41]      7.35    0.04  2.42     3.42     5.54     7.16     8.82    12.57  3670 1.00
## mu[42]      1.80    0.02  1.15     0.37     0.97     1.53     2.34     4.94  2841 1.00
## mu[43]      1.68    0.02  1.00     0.38     0.99     1.47     2.18     4.13  2643 1.00
## mu[44]      1.55    0.02  1.02     0.28     0.82     1.32     1.98     4.20  3067 1.00
## mu[45]      1.88    0.03  1.17     0.40     1.08     1.63     2.44     4.99  1851 1.00
## mu[46]      2.74    0.03  1.54     0.64     1.63     2.45     3.49     6.65  3325 1.00
## mu[47]     66.82    0.15  8.14    51.80    61.13    66.64    71.99    83.52  2924 1.00
## mu[48]      2.12    0.02  1.22     0.49     1.23     1.88     2.73     5.13  2748 1.00
## mu[49]     53.17    0.13  7.10    40.68    48.10    52.80    57.96    67.46  3152 1.00
## mu[50]      4.17    0.03  1.78     1.52     2.84     3.89     5.23     8.14  2888 1.00
## mu[51]      9.83    0.05  3.10     4.91     7.56     9.47    11.72    16.64  3273 1.00
## mu[52]      3.41    0.03  1.60     1.08     2.27     3.14     4.33     7.17  2863 1.00
## mu[53]      7.41    0.04  2.57     3.18     5.58     7.17     8.93    13.40  3342 1.00
## mu[54]     25.91    0.09  5.20    17.12    22.11    25.52    29.38    36.47  3163 1.00
## mu[55]      6.55    0.04  2.42     2.72     4.83     6.16     7.93    12.04  3157 1.00
## mu[56]      0.95    0.01  0.68     0.16     0.45     0.78     1.27     2.74  2233 1.00
## mu[57]     14.93    0.06  3.71     8.76    12.19    14.64    17.10    23.37  3303 1.00
## mu[58]      3.69    0.03  1.64     1.28     2.47     3.49     4.58     7.63  2483 1.00
## mu[59]      2.82    0.03  1.50     0.75     1.78     2.55     3.59     6.39  2537 1.00
## mu[60]      7.92    0.04  2.55     3.69     6.07     7.69     9.45    13.55  4373 1.00
## mu[61]      3.76    0.03  1.69     1.34     2.47     3.46     4.75     7.96  2366 1.00
## mu[62]      2.55    0.03  1.40     0.66     1.52     2.27     3.28     5.96  2545 1.00
## mu[63]      1.06    0.02  0.79     0.17     0.50     0.85     1.41     3.13  2710 1.00
## mu[64]      4.83    0.03  2.11     1.68     3.29     4.49     6.11     9.71  3856 1.00
## mu[65]      4.13    0.03  1.81     1.43     2.80     3.84     5.28     8.22  2768 1.00
## mu[66]      0.93    0.02  0.70     0.14     0.44     0.77     1.19     2.88  1662 1.00
## mu[67]      4.80    0.04  1.94     1.80     3.43     4.54     5.87     9.39  2515 1.00
## mu[68]      1.95    0.02  1.15     0.45     1.13     1.75     2.49     4.99  3199 1.00
## mu[69]      3.94    0.04  1.86     1.30     2.60     3.63     4.95     8.13  1930 1.00
## mu[70]      4.85    0.04  2.05     1.74     3.37     4.49     6.10     9.51  2724 1.00
## mu[71]     47.98    0.12  7.09    34.75    43.24    47.59    52.21    62.71  3640 1.00
## mu[72]      6.96    0.04  2.51     2.89     5.15     6.69     8.42    12.70  3159 1.00
## mu[73]      1.54    0.02  1.01     0.29     0.83     1.32     2.00     4.11  2577 1.00
## mu[74]     11.80    0.06  3.24     6.40     9.43    11.51    13.79    18.84  2491 1.00
## mu[75]      3.15    0.03  1.63     0.81     1.99     2.83     3.94     7.43  2367 1.00
## mu[76]      4.20    0.03  1.84     1.54     2.85     3.89     5.24     8.31  3962 1.00
## mu[77]      0.81    0.01  0.64     0.11     0.34     0.61     1.11     2.46  2056 1.00
## mu[78]      3.13    0.03  1.58     0.88     1.99     2.83     3.95     6.94  3266 1.00
## mu[79]      2.61    0.03  1.37     0.76     1.61     2.37     3.28     5.94  2666 1.00
## mu[80]      6.71    0.05  2.46     2.88     4.99     6.40     8.09    12.24  2700 1.00
## mu[81]      3.50    0.02  1.61     1.17     2.34     3.19     4.39     7.39  4333 1.00
## mu[82]      1.04    0.01  0.74     0.17     0.50     0.84     1.35     2.96  2577 1.00
## mu[83]     12.64    0.06  3.50     6.89    10.11    12.28    14.87    20.11  3332 1.00
## mu[84]      1.07    0.02  0.81     0.16     0.50     0.86     1.37     3.17  2057 1.00
## mu[85]      0.59    0.01  0.48     0.09     0.26     0.45     0.78     1.86  2013 1.00
## mu[86]      2.25    0.02  1.31     0.53     1.30     2.00     2.87     5.60  3410 1.00
## mu[87]      1.27    0.02  0.89     0.22     0.65     1.05     1.64     3.63  1784 1.00
## mu[88]     23.69    0.08  4.88    14.67    20.38    23.29    26.72    34.22  3638 1.00
## mu[89]     11.21    0.05  3.26     5.57     8.97    10.92    13.09    18.59  3518 1.00
## mu[90]      7.86    0.05  2.68     3.54     5.95     7.55     9.48    13.83  3032 1.00
## mu[91]      3.48    0.04  1.78     1.06     2.14     3.14     4.50     7.62  2226 1.00
## mu[92]     24.12    0.08  4.73    16.17    20.61    23.60    27.27    34.16  3199 1.00
## mu[93]      0.78    0.01  0.65     0.09     0.34     0.60     1.01     2.53  1939 1.00
## mu[94]      6.11    0.04  2.23     2.54     4.48     5.86     7.48    11.16  3385 1.00
## mu[95]      5.36    0.04  2.17     2.11     3.77     5.04     6.55    10.06  3078 1.00
## mu[96]      2.52    0.02  1.34     0.63     1.56     2.25     3.20     5.98  3670 1.00
## mu[97]     14.28    0.05  3.75     7.82    11.59    13.83    16.67    22.76  4764 1.00
## mu[98]      1.54    0.02  1.00     0.30     0.81     1.33     2.02     3.96  2462 1.00
## mu[99]      1.10    0.01  0.75     0.18     0.57     0.93     1.42     3.08  2562 1.00
## mu[100]     2.80    0.03  1.39     0.81     1.78     2.58     3.55     6.17  2664 1.00
## mu[101]     1.15    0.02  0.84     0.19     0.56     0.92     1.50     3.35  2218 1.00
## mu[102]     9.07    0.05  2.85     4.35     7.04     8.78    10.82    15.40  3689 1.00
## mu[103]     5.61    0.04  2.24     2.24     3.96     5.32     6.91    10.68  2839 1.00
## mu[104]     2.58    0.03  1.39     0.69     1.54     2.33     3.35     6.02  2722 1.00
## mu[105]     1.93    0.02  1.17     0.43     1.09     1.67     2.45     4.87  3010 1.00
## mu[106]     1.79    0.02  1.09     0.36     0.97     1.56     2.35     4.42  3096 1.00
## mu[107]     9.98    0.05  2.97     5.10     7.88     9.69    11.74    16.65  3085 1.00
## mu[108]     4.42    0.03  1.83     1.58     3.18     4.17     5.37     8.81  3219 1.00
## mu[109]     1.25    0.02  0.82     0.22     0.66     1.07     1.61     3.44  2750 1.00
## mu[110]    22.73    0.09  4.56    14.54    19.61    22.31    25.61    32.99  2438 1.00
## mu[111]     4.07    0.03  1.67     1.58     2.84     3.80     5.13     7.94  2604 1.00
## mu[112]     7.44    0.05  2.60     3.33     5.57     7.03     9.05    12.99  2797 1.00
## mu[113]     2.22    0.02  1.21     0.60     1.32     1.98     2.84     5.08  2884 1.00
## mu[114]    42.46    0.12  6.47    31.05    37.83    42.16    46.72    56.04  2797 1.00
## mu[115]     3.56    0.03  1.64     1.24     2.34     3.22     4.56     7.43  2706 1.00
## mu[116]     7.60    0.04  2.52     3.74     5.84     7.31     9.09    13.06  4233 1.00
## mu[117]     1.49    0.02  1.00     0.29     0.77     1.25     1.94     4.23  2457 1.00
## mu[118]     4.59    0.03  1.88     1.69     3.23     4.28     5.67     9.02  3443 1.00
## mu[119]     3.49    0.03  1.67     1.03     2.30     3.20     4.37     7.79  2968 1.00
## mu[120]     0.65    0.01  0.52     0.09     0.30     0.51     0.83     1.99  2101 1.00
## mu[121]     1.28    0.02  0.88     0.23     0.65     1.08     1.67     3.49  2743 1.00
## mu[122]     1.39    0.02  0.95     0.25     0.73     1.17     1.79     3.83  2362 1.00
## mu[123]     1.33    0.02  0.91     0.24     0.67     1.13     1.75     3.59  2680 1.00
## mu[124]    18.73    0.08  4.24    11.58    15.64    18.40    21.38    27.92  3169 1.00
## mu[125]     1.69    0.02  1.03     0.37     0.96     1.50     2.17     4.24  2793 1.00
## mu[126]    27.76    0.10  5.08    18.69    24.21    27.51    30.98    38.35  2820 1.00
## mu[127]     3.66    0.03  1.71     1.19     2.40     3.37     4.72     7.47  3059 1.00
## mu[128]    12.34    0.07  3.50     6.61     9.76    11.92    14.48    20.46  2741 1.00
## mu[129]    44.45    0.11  6.34    33.17    39.97    44.01    48.63    57.84  3170 1.00
## mu[130]     9.28    0.05  2.96     4.64     7.12     9.01    10.96    15.92  3030 1.00
## mu[131]     3.27    0.03  1.60     0.99     2.10     2.97     4.18     7.27  2560 1.00
## mu[132]    19.59    0.07  4.20    12.42    16.53    19.17    22.41    28.13  3890 1.00
## mu[133]     1.18    0.02  0.82     0.22     0.59     0.96     1.57     3.22  1876 1.00
## mu[134]    38.78    0.11  6.18    27.54    34.61    38.37    42.65    51.66  3264 1.00
## mu[135]    17.03    0.07  4.10     9.93    14.23    16.77    19.53    25.72  3644 1.00
## mu[136]     1.42    0.02  0.98     0.25     0.74     1.19     1.82     4.04  2546 1.00
## mu[137]     2.87    0.03  1.46     0.71     1.86     2.63     3.62     6.62  2965 1.00
## mu[138]     1.84    0.02  1.06     0.42     1.06     1.64     2.35     4.59  3375 1.00
## mu[139]     5.52    0.04  2.25     2.10     3.90     5.17     6.77    10.48  2927 1.00
## mu[140]     2.01    0.02  1.20     0.43     1.16     1.74     2.56     5.16  3460 1.00
## mu[141]     2.02    0.02  1.12     0.51     1.18     1.83     2.59     4.82  3058 1.00
## mu[142]     2.29    0.02  1.36     0.56     1.27     1.97     3.03     5.57  3358 1.00
## mu[143]     5.08    0.03  2.00     1.96     3.70     4.78     6.15     9.88  3427 1.00
## mu[144]     5.30    0.03  2.08     2.08     3.82     5.06     6.41    10.00  3633 1.00
## mu[145]    18.73    0.08  4.16    11.66    15.82    18.41    21.20    27.61  2925 1.00
## mu[146]     1.35    0.02  0.91     0.26     0.67     1.12     1.80     3.76  2138 1.00
## mu[147]   106.13    0.18 10.34    86.67    98.79   105.67   113.36   126.74  3354 1.00
## mu[148]     4.48    0.03  1.84     1.75     3.15     4.20     5.58     8.95  3154 1.00
## mu[149]     1.34    0.02  0.88     0.24     0.71     1.13     1.75     3.68  3020 1.00
## mu[150]     3.57    0.03  1.71     1.06     2.40     3.31     4.42     7.56  2915 1.00
## mu[151]    33.96    0.10  5.98    23.84    29.51    33.58    37.86    46.28  3708 1.00
## mu[152]     1.42    0.02  0.93     0.28     0.74     1.18     1.86     3.74  2217 1.00
## mu[153]     0.32    0.01  0.31     0.03     0.12     0.23     0.43     1.15  1862 1.00
## mu[154]     9.91    0.06  2.86     5.04     7.80     9.66    11.82    16.19  2608 1.00
## mu[155]    17.42    0.07  3.92    10.73    14.67    17.13    19.74    26.03  2964 1.00
## mu[156]     2.06    0.02  1.29     0.41     1.12     1.79     2.73     5.21  3492 1.00
## mu[157]    52.12    0.13  7.23    39.09    47.32    51.80    56.31    67.19  2982 1.00
## mu[158]    10.48    0.05  3.11     5.28     8.27    10.21    12.46    17.45  3525 1.00
## mu[159]     1.71    0.03  1.08     0.42     0.95     1.45     2.25     4.36  1860 1.00
## mu[160]     0.83    0.02  0.70     0.10     0.36     0.62     1.08     2.62  1892 1.00
## mu[161]     3.38    0.04  1.69     1.00     2.15     3.10     4.30     7.40  2235 1.00
## mu[162]     6.73    0.04  2.60     2.75     4.79     6.35     8.22    12.76  3614 1.00
## mu[163]     0.61    0.01  0.54     0.08     0.26     0.45     0.79     2.05  2337 1.00
## mu[164]     3.25    0.03  1.64     0.99     2.03     2.97     4.12     7.30  2703 1.00
## mu[165]     2.55    0.02  1.35     0.72     1.53     2.31     3.30     5.67  3278 1.00
## mu[166]    12.01    0.06  3.48     6.18     9.45    11.69    14.24    19.60  3275 1.00
## mu[167]   124.38    0.20 10.81   103.85   117.19   124.04   131.35   147.23  3063 1.00
## mu[168]    13.47    0.06  3.76     7.12    10.76    13.13    15.71    21.88  3449 1.00
## mu[169]    23.45    0.09  4.70    15.19    20.06    23.20    26.46    33.36  2736 1.00
## mu[170]     2.42    0.02  1.34     0.61     1.42     2.20     3.04     5.81  3406 1.00
## mu[171]     1.41    0.02  0.92     0.29     0.79     1.22     1.76     3.70  1800 1.00
## mu[172]     6.94    0.04  2.49     2.91     5.14     6.59     8.43    12.70  3411 1.00
## mu[173]     9.33    0.05  3.02     4.28     7.15     9.07    11.04    15.98  3621 1.00
## mu[174]    44.44    0.13  6.68    32.93    39.73    44.01    48.98    58.51  2783 1.00
## mu[175]     9.85    0.05  2.87     5.13     7.83     9.61    11.64    16.29  3064 1.00
## mu[176]    25.32    0.09  4.73    16.42    22.02    25.07    28.28    34.91  2613 1.00
## mu[177]     1.76    0.02  1.11     0.37     0.99     1.52     2.25     4.73  2296 1.00
## mu[178]     3.60    0.03  1.74     1.09     2.38     3.30     4.52     7.66  3038 1.00
## mu[179]     8.24    0.05  2.73     3.90     6.27     7.88     9.94    14.67  2716 1.00
## mu[180]     2.42    0.03  1.37     0.59     1.41     2.19     3.09     5.87  2534 1.00
## mu[181]    13.06    0.06  3.50     6.97    10.48    12.75    15.17    20.82  3175 1.00
## mu[182]    11.53    0.05  3.32     6.01     9.08    11.22    13.42    19.32  3758 1.00
## mu[183]     8.12    0.05  2.71     3.84     6.16     7.80     9.74    14.04  2575 1.00
## mu[184]     2.77    0.03  1.42     0.82     1.71     2.50     3.49     6.30  2323 1.00
## mu[185]     2.08    0.02  1.21     0.49     1.19     1.80     2.72     5.01  2523 1.00
## mu[186]     4.51    0.03  1.86     1.69     3.11     4.26     5.67     8.77  3799 1.00
## mu[187]     2.60    0.03  1.36     0.70     1.62     2.34     3.33     5.96  2540 1.00
## mu[188]     2.43    0.03  1.38     0.59     1.42     2.13     3.20     5.78  2844 1.00
## mu[189]    72.67    0.15  8.52    57.31    66.51    72.13    78.47    90.27  3123 1.00
## mu[190]     2.05    0.02  1.25     0.49     1.13     1.82     2.66     4.95  2743 1.00
## mu[191]     3.81    0.03  1.77     1.20     2.47     3.52     4.84     7.97  3213 1.00
## mu[192]     0.41    0.01  0.39     0.04     0.15     0.29     0.54     1.43  1807 1.00
## mu[193]     6.04    0.04  2.20     2.49     4.43     5.79     7.40    11.16  3713 1.00
## mu[194]    13.59    0.06  3.46     8.02    10.98    13.28    15.69    21.15  2869 1.00
## mu[195]     2.65    0.03  1.34     0.75     1.69     2.42     3.39     5.84  2632 1.00
## mu[196]     0.96    0.01  0.72     0.16     0.45     0.78     1.28     2.77  2743 1.00
## mu[197]     1.44    0.02  0.95     0.27     0.73     1.22     1.89     3.79  2295 1.00
## mu[198]     2.10    0.02  1.16     0.54     1.23     1.85     2.78     5.02  3313 1.00
## mu[199]     2.32    0.02  1.34     0.56     1.33     2.01     3.08     5.44  3382 1.00
## mu[200]     4.37    0.03  1.89     1.53     3.00     4.04     5.47     8.75  3207 1.00
## mu[201]     3.60    0.03  1.68     1.21     2.36     3.31     4.54     7.61  2726 1.00
## mu[202]     2.16    0.02  1.24     0.52     1.25     1.91     2.75     5.28  3051 1.00
## mu[203]     1.82    0.02  1.08     0.40     1.02     1.59     2.35     4.52  3212 1.00
## mu[204]     1.53    0.02  0.99     0.30     0.81     1.32     2.00     4.10  2899 1.00
## mu[205]     1.15    0.02  0.81     0.20     0.57     0.95     1.50     3.26  2133 1.00
## mu[206]     0.77    0.01  0.64     0.10     0.33     0.59     1.02     2.40  2333 1.00
## mu[207]     7.41    0.04  2.55     3.18     5.62     7.15     8.87    13.46  3395 1.00
## mu[208]     7.52    0.04  2.64     3.29     5.60     7.21     9.04    13.53  3694 1.00
## mu[209]     0.24    0.01  0.28     0.02     0.07     0.14     0.30     1.03  1472 1.00
## mu[210]     2.64    0.03  1.39     0.78     1.65     2.37     3.33     6.03  2283 1.00
## mu[211]    18.09    0.07  4.08    11.00    15.19    17.76    20.52    27.34  3072 1.00
## mu[212]     1.38    0.02  0.94     0.24     0.71     1.15     1.79     3.75  2369 1.00
## mu[213]     1.87    0.02  1.13     0.40     1.07     1.64     2.41     4.62  2973 1.00
## mu[214]    15.23    0.07  3.85     8.89    12.40    14.82    17.66    23.53  3083 1.00
## mu[215]     1.27    0.02  0.84     0.25     0.69     1.08     1.61     3.39  2471 1.00
## mu[216]     6.25    0.04  2.30     2.64     4.56     6.00     7.70    11.57  3006 1.00
## mu[217]    11.90    0.06  3.49     6.13     9.31    11.52    13.95    19.73  3121 1.00
## mu[218]     2.28    0.02  1.31     0.54     1.33     2.03     2.96     5.44  3621 1.00
## mu[219]     3.74    0.03  1.77     1.17     2.42     3.44     4.75     7.88  3249 1.00
## mu[220]     3.05    0.03  1.49     0.92     1.95     2.77     3.88     6.77  3198 1.00
## mu[221]     6.37    0.04  2.33     2.71     4.71     6.03     7.76    11.72  3078 1.00
## mu[222]     5.83    0.04  2.21     2.53     4.22     5.56     7.08    10.82  3070 1.00
## mu[223]     1.98    0.02  1.21     0.43     1.11     1.71     2.57     4.98  2655 1.00
## mu[224]     2.58    0.02  1.37     0.66     1.57     2.34     3.30     5.79  3128 1.00
## mu[225]    26.28    0.09  5.05    17.55    22.86    25.96    29.33    36.82  3251 1.00
## mu[226]     7.09    0.05  2.50     3.21     5.27     6.73     8.58    12.90  2885 1.00
## mu[227]     5.58    0.04  2.26     2.11     3.96     5.31     6.82    10.75  3974 1.00
## mu[228]    39.42    0.10  6.26    28.53    34.95    39.00    43.58    51.86  4123 1.00
## mu[229]     8.08    0.05  2.73     3.78     6.17     7.74     9.67    14.21  2755 1.00
## mu[230]     3.72    0.03  1.71     1.16     2.50     3.43     4.63     7.98  2665 1.00
## mu[231]     9.11    0.06  2.90     4.40     7.16     8.72    10.75    15.79  2440 1.00
## mu[232]     1.03    0.01  0.76     0.16     0.49     0.83     1.32     3.13  2678 1.00
## mu[233]    11.41    0.06  3.21     6.18     9.12    11.04    13.40    18.67  2711 1.00
## mu[234]    14.01    0.06  3.65     7.73    11.48    13.71    16.24    21.86  3717 1.00
## mu[235]     7.71    0.04  2.60     3.59     5.89     7.45     9.18    13.97  3466 1.00
## mu[236]    12.53    0.07  3.55     6.56     9.90    12.17    14.71    20.10  2490 1.00
## mu[237]     1.46    0.02  0.94     0.29     0.80     1.26     1.85     3.90  2787 1.00
## mu[238]     7.72    0.04  2.68     3.31     5.76     7.40     9.33    14.09  3752 1.00
## mu[239]    67.03    0.16  8.35    52.62    61.07    66.41    72.46    84.68  2856 1.00
## mu[240]     3.52    0.03  1.59     1.23     2.33     3.22     4.36     7.26  2680 1.00
## mu[241]     2.56    0.03  1.44     0.68     1.53     2.23     3.34     6.10  2542 1.00
## mu[242]     5.56    0.04  2.28     2.12     3.93     5.18     6.85    11.11  2716 1.00
## mu[243]     1.57    0.02  0.97     0.35     0.88     1.33     2.07     3.94  2698 1.00
## mu[244]     4.36    0.04  1.85     1.59     3.06     4.08     5.38     8.79  2463 1.00
## mu[245]     2.92    0.03  1.49     0.88     1.85     2.64     3.69     6.50  3037 1.00
## mu[246]     3.03    0.03  1.52     0.88     1.90     2.73     3.88     6.57  2794 1.00
## mu[247]     1.92    0.03  1.21     0.42     1.07     1.63     2.48     4.98  2111 1.00
## mu[248]     6.80    0.04  2.37     3.06     5.18     6.56     8.08    12.16  3055 1.00
## mu[249]    63.46    0.15  7.76    49.01    57.95    63.25    68.86    78.75  2696 1.00
## mu[250]     2.44    0.03  1.30     0.67     1.49     2.20     3.11     5.62  2283 1.00
## mu[251]     0.74    0.01  0.59     0.10     0.33     0.57     0.99     2.29  2109 1.00
## mu[252]     8.79    0.05  2.78     4.36     6.72     8.46    10.49    14.91  2807 1.00
## mu[253]    42.60    0.10  6.71    31.08    37.86    42.14    46.98    56.33  4525 1.00
## mu[254]     4.77    0.04  2.02     1.81     3.24     4.45     5.96     9.51  2787 1.00
## mu[255]     3.72    0.03  1.71     1.27     2.45     3.43     4.60     7.83  3103 1.00
## mu[256]     4.49    0.04  1.98     1.53     3.02     4.21     5.64     9.12  3034 1.00
## mu[257]    10.08    0.06  3.32     4.93     7.63     9.59    12.06    17.75  3381 1.00
## mu[258]     3.85    0.03  1.78     1.25     2.56     3.56     4.90     8.22  3305 1.00
## mu[259]     3.86    0.03  1.77     1.28     2.55     3.52     4.91     7.95  2553 1.00
## mu[260]     1.44    0.02  0.95     0.27     0.77     1.23     1.88     3.97  2672 1.00
## mu[261]     6.38    0.04  2.30     2.81     4.63     6.12     7.81    11.42  3200 1.00
## mu[262]     4.26    0.03  1.95     1.44     2.79     3.95     5.36     8.83  3982 1.00
## mu[263]     2.38    0.02  1.30     0.61     1.44     2.17     3.05     5.63  3416 1.00
## mu[264]     3.92    0.03  1.72     1.31     2.72     3.65     4.82     8.20  3164 1.00
## mu[265]     1.01    0.01  0.73     0.17     0.49     0.82     1.33     2.81  2462 1.00
## mu[266]    32.56    0.09  5.69    22.62    28.68    32.31    36.08    44.82  4115 1.00
## mu[267]     1.51    0.02  1.00     0.32     0.77     1.28     1.99     4.11  2571 1.00
## mu[268]     0.89    0.02  0.72     0.12     0.39     0.69     1.16     2.74  1953 1.00
## mu[269]     1.94    0.03  1.15     0.47     1.14     1.69     2.45     5.09  1805 1.00
## mu[270]     1.27    0.02  0.91     0.23     0.63     1.04     1.64     3.63  2730 1.00
## mu[271]    13.18    0.06  3.50     7.28    10.62    12.81    15.42    20.81  3195 1.00
## mu[272]     6.85    0.04  2.46     2.98     5.12     6.58     8.29    12.71  3832 1.00
## mu[273]     8.39    0.04  2.73     3.95     6.43     8.05     9.98    14.62  3690 1.00
## mu[274]     1.40    0.02  0.95     0.27     0.69     1.16     1.86     3.93  2873 1.00
## mu[275]    46.38    0.13  7.08    33.56    41.51    46.03    50.99    61.87  2981 1.00
## mu[276]     2.66    0.03  1.43     0.69     1.62     2.37     3.41     6.24  2441 1.00
## mu[277]    15.74    0.06  3.80     9.16    12.93    15.44    18.27    23.42  3677 1.00
## mu[278]     0.39    0.01  0.37     0.05     0.16     0.27     0.50     1.37  1963 1.00
## mu[279]     1.43    0.02  0.94     0.30     0.78     1.23     1.83     3.90  2329 1.00
## mu[280]     2.14    0.02  1.23     0.52     1.25     1.89     2.73     5.14  3056 1.00
## mu[281]    11.51    0.06  3.36     5.91     9.08    11.13    13.47    19.02  3517 1.00
## mu[282]     4.88    0.04  1.99     1.77     3.54     4.63     5.96     9.70  3079 1.00
## mu[283]     1.07    0.01  0.76     0.18     0.51     0.87     1.42     2.99  2827 1.00
## mu[284]     0.96    0.01  0.71     0.15     0.46     0.79     1.25     2.75  2325 1.00
## mu[285]     9.14    0.05  2.92     4.35     6.99     8.86    10.92    15.69  3387 1.00
## mu[286]    72.28    0.14  8.59    56.16    66.62    72.13    77.54    89.71  3824 1.00
## mu[287]     1.63    0.02  0.98     0.38     0.95     1.42     2.09     4.06  2621 1.00
## mu[288]     2.12    0.02  1.17     0.55     1.25     1.91     2.74     4.96  2277 1.00
## mu[289]     2.27    0.02  1.32     0.51     1.28     1.97     3.00     5.39  3215 1.00
## mu[290]     2.85    0.03  1.53     0.80     1.77     2.52     3.62     6.54  2156 1.00
## mu[291]     1.80    0.02  1.04     0.39     1.06     1.60     2.31     4.53  2526 1.00
## mu[292]     1.42    0.02  0.95     0.28     0.73     1.19     1.89     3.81  2485 1.00
## mu[293]     4.23    0.03  1.78     1.61     2.94     3.90     5.28     8.51  3397 1.00
## mu[294]     1.72    0.02  1.13     0.34     0.91     1.45     2.27     4.66  2127 1.00
## mu[295]     4.09    0.03  1.83     1.28     2.74     3.83     5.11     8.43  3415 1.00
## mu[296]    38.81    0.11  6.04    27.44    34.82    38.53    42.55    51.42  2985 1.00
## mu[297]     2.87    0.03  1.54     0.76     1.79     2.55     3.68     6.65  2672 1.00
## mu[298]     7.65    0.05  2.58     3.40     5.75     7.33     9.24    13.19  2801 1.00
## mu[299]     3.81    0.03  1.70     1.28     2.59     3.54     4.75     7.85  3269 1.00
## mu[300]     5.03    0.04  2.10     1.78     3.49     4.81     6.14    10.13  3175 1.00
## mu[301]    43.09    0.10  6.27    31.81    38.64    42.74    47.06    56.33  3674 1.00
## mu[302]     1.18    0.02  0.81     0.21     0.61     1.00     1.51     3.29  1976 1.00
## mu[303]     1.98    0.02  1.13     0.52     1.14     1.76     2.54     4.66  2557 1.00
## mu[304]     0.82    0.02  0.62     0.13     0.38     0.67     1.08     2.43  1565 1.00
## mu[305]     6.11    0.04  2.40     2.51     4.38     5.74     7.45    11.48  3155 1.00
## mu[306]     4.90    0.03  2.00     1.88     3.43     4.61     6.04     9.69  3566 1.00
## mu[307]    97.97    0.16 10.07    79.48    91.11    97.56   104.61   118.68  3745 1.00
## mu[308]     2.90    0.03  1.45     0.85     1.86     2.65     3.66     6.50  3329 1.00
## mu[309]    22.97    0.09  4.76    14.80    19.60    22.47    25.94    32.65  2907 1.00
## mu[310]     1.55    0.02  1.05     0.30     0.77     1.29     2.04     4.20  2691 1.00
## mu[311]    10.13    0.06  3.14     4.96     7.84     9.78    12.13    16.87  2732 1.00
## mu[312]     4.73    0.04  2.00     1.73     3.29     4.44     5.92     9.27  2963 1.00
## mu[313]    60.32    0.13  7.60    46.50    54.86    59.94    65.55    76.29  3204 1.00
## mu[314]    18.26    0.07  4.11    11.18    15.33    18.03    20.92    26.67  3066 1.00
## mu[315]     7.05    0.05  2.52     3.22     5.19     6.74     8.46    12.91  2828 1.00
## mu[316]     1.14    0.02  0.85     0.18     0.55     0.89     1.48     3.44  2215 1.00
## mu[317]   111.38    0.18 10.59    91.38   104.11   111.25   118.63   132.49  3314 1.00
## mu[318]    33.65    0.12  5.82    22.97    29.66    33.45    37.28    45.79  2352 1.00
## mu[319]     4.39    0.03  1.89     1.50     3.00     4.12     5.43     8.87  3266 1.00
## mu[320]     0.82    0.01  0.66     0.11     0.35     0.63     1.09     2.57  2462 1.00
## mu[321]     8.94    0.05  2.66     4.43     7.04     8.66    10.55    14.99  3377 1.00
## mu[322]     2.05    0.02  1.21     0.53     1.17     1.77     2.65     4.80  2755 1.00
## mu[323]    42.21    0.11  6.38    31.08    37.48    41.88    46.58    55.81  3677 1.00
## mu[324]     2.59    0.02  1.29     0.71     1.65     2.37     3.31     5.70  3647 1.00
## mu[325]     2.37    0.02  1.32     0.56     1.39     2.12     3.10     5.51  2821 1.00
## mu[326]     3.00    0.03  1.48     0.87     1.92     2.75     3.88     6.61  2672 1.00
## mu[327]    17.45    0.07  3.97    10.44    14.72    17.16    20.05    25.88  3237 1.00
## mu[328]    16.18    0.07  3.89     9.59    13.30    15.87    18.63    24.48  3121 1.00
## mu[329]     0.74    0.01  0.62     0.10     0.32     0.56     0.97     2.36  2153 1.00
## mu[330]    13.86    0.06  3.68     7.83    11.15    13.52    16.15    22.08  4140 1.00
## mu[331]     2.28    0.02  1.26     0.56     1.37     2.01     2.94     5.48  3074 1.00
## mu[332]     6.04    0.04  2.23     2.62     4.35     5.74     7.36    11.01  2681 1.00
## mu[333]    31.14    0.10  5.49    21.23    27.37    30.77    34.61    42.28  3036 1.00
## mu[334]     3.41    0.03  1.59     1.10     2.27     3.15     4.32     7.06  2634 1.00
## mu[335]     3.99    0.03  1.74     1.35     2.69     3.69     4.95     8.23  3068 1.00
## mu[336]     1.25    0.02  0.85     0.22     0.64     1.06     1.60     3.55  2220 1.00
## mu[337]     6.81    0.04  2.31     3.16     5.14     6.49     8.19    12.16  2833 1.00
## mu[338]     5.14    0.03  1.92     2.12     3.77     4.89     6.28     9.53  3376 1.00
## mu[339]     2.02    0.02  1.18     0.48     1.16     1.77     2.63     5.05  2366 1.00
## mu[340]     6.21    0.04  2.44     2.47     4.49     5.85     7.54    12.09  3422 1.00
## mu[341]     9.41    0.06  2.95     4.47     7.33     9.17    11.22    16.03  2418 1.00
## mu[342]     2.46    0.02  1.33     0.63     1.51     2.22     3.14     5.68  3216 1.00
## mu[343]     3.14    0.03  1.55     0.95     2.08     2.90     3.92     7.05  2938 1.00
## mu[344]     8.30    0.05  2.66     4.08     6.32     7.97     9.89    14.17  2723 1.00
## mu[345]    65.75    0.12  7.71    51.39    60.46    65.54    70.73    81.11  4271 1.00
## mu[346]    14.46    0.07  3.67     7.89    11.93    14.27    16.81    22.15  2931 1.00
## mu[347]     1.18    0.02  0.82     0.22     0.59     0.97     1.56     3.28  2417 1.00
## mu[348]    14.70    0.06  3.59     8.61    12.02    14.37    17.06    22.12  3102 1.00
## mu[349]     2.51    0.02  1.37     0.67     1.53     2.24     3.20     6.09  3210 1.00
## mu[350]     0.45    0.01  0.42     0.05     0.16     0.32     0.59     1.54  1832 1.00
## mu[351]     1.96    0.02  1.12     0.45     1.11     1.72     2.55     4.71  2841 1.00
## mu[352]    17.80    0.08  4.02    10.65    14.86    17.48    20.52    26.30  2781 1.00
## mu[353]     2.09    0.02  1.26     0.49     1.18     1.80     2.71     5.31  2635 1.00
## mu[354]     1.75    0.02  1.05     0.36     0.99     1.52     2.30     4.37  2972 1.00
## mu[355]     1.39    0.02  0.92     0.26     0.73     1.18     1.79     3.69  2364 1.00
## mu[356]    56.81    0.15  7.55    42.56    51.71    56.57    61.50    72.48  2540 1.00
## mu[357]     3.16    0.03  1.56     0.92     2.03     2.94     3.91     6.84  3223 1.00
## mu[358]     3.51    0.03  1.66     1.17     2.25     3.17     4.45     7.50  3154 1.00
## mu[359]     6.05    0.05  2.31     2.41     4.44     5.80     7.29    10.92  2263 1.00
## mu[360]     2.54    0.03  1.46     0.61     1.48     2.24     3.28     6.11  2380 1.00
## mu[361]     2.95    0.03  1.51     0.81     1.90     2.70     3.71     6.51  2823 1.00
## mu[362]    10.64    0.05  3.08     5.36     8.39    10.44    12.57    17.49  3810 1.00
## mu[363]     3.10    0.03  1.58     0.92     1.95     2.81     3.95     7.05  3167 1.00
## mu[364]     5.58    0.04  2.15     2.19     4.04     5.29     6.83    10.40  3145 1.00
## mu[365]    20.07    0.08  4.37    12.53    16.97    19.82    22.89    29.24  3038 1.00
## mu[366]     5.93    0.04  2.29     2.37     4.20     5.57     7.27    11.14  3601 1.00
## mu[367]     2.26    0.03  1.33     0.46     1.35     1.99     2.84     5.57  2752 1.00
## mu[368]     1.07    0.02  0.77     0.19     0.53     0.86     1.40     3.01  2261 1.00
## mu[369]     1.21    0.02  0.82     0.21     0.60     1.00     1.62     3.29  2298 1.00
## mu[370]     1.38    0.02  0.90     0.27     0.73     1.19     1.75     3.65  2161 1.00
## mu[371]     1.23    0.02  0.88     0.20     0.61     0.99     1.60     3.59  3012 1.00
## mu[372]     5.93    0.04  2.23     2.47     4.25     5.64     7.25    11.07  2555 1.00
## mu[373]     2.87    0.03  1.48     0.76     1.78     2.59     3.61     6.40  2941 1.00
## mu[374]     1.27    0.02  0.91     0.20     0.62     1.06     1.66     3.68  2376 1.00
## mu[375]    21.93    0.07  4.67    13.52    18.72    21.66    24.93    31.92  4324 1.00
## mu[376]    16.93    0.07  3.96     9.99    14.11    16.75    19.48    25.41  2964 1.00
## mu[377]     2.22    0.02  1.30     0.52     1.27     1.96     2.88     5.50  3672 1.00
## mu[378]     0.93    0.01  0.66     0.17     0.43     0.75     1.24     2.65  2725 1.00
## mu[379]     1.97    0.02  1.18     0.47     1.09     1.71     2.60     4.95  2994 1.00
## mu[380]     0.77    0.01  0.58     0.12     0.37     0.62     1.00     2.44  2739 1.00
## mu[381]     2.00    0.02  1.19     0.47     1.15     1.72     2.53     5.02  2861 1.00
## mu[382]     8.97    0.05  2.78     4.46     6.94     8.63    10.63    15.14  3584 1.00
## mu[383]     1.84    0.02  1.12     0.42     1.03     1.58     2.37     4.79  2768 1.00
## mu[384]     3.26    0.03  1.62     0.99     2.03     2.98     4.17     6.82  2928 1.00
## mu[385]     1.61    0.02  1.00     0.36     0.91     1.39     2.05     4.23  3046 1.00
## mu[386]     5.31    0.04  2.09     2.08     3.75     5.01     6.48    10.19  2941 1.00
## mu[387]    19.98    0.07  4.47    12.02    16.91    19.67    22.57    29.89  4152 1.00
## mu[388]     4.26    0.03  1.91     1.47     2.79     3.97     5.37     8.92  3506 1.00
## mu[389]    24.81    0.07  4.85    16.34    21.31    24.53    28.03    34.87  4757 1.00
## mu[390]     4.61    0.04  1.97     1.59     3.21     4.32     5.73     9.26  2947 1.00
## mu[391]     1.28    0.02  0.86     0.22     0.66     1.07     1.67     3.65  2028 1.00
## mu[392]     4.03    0.03  1.72     1.30     2.78     3.80     5.07     8.13  2993 1.00
## mu[393]    25.12    0.07  4.87    16.41    21.80    24.79    28.18    35.66  4764 1.00
## mu[394]     6.27    0.04  2.35     2.71     4.61     6.05     7.56    11.58  2838 1.00
## mu[395]     7.98    0.05  2.72     3.62     5.99     7.65     9.61    13.94  3306 1.00
## mu[396]     3.93    0.04  1.79     1.34     2.62     3.62     4.91     8.15  2182 1.00
## mu[397]    18.40    0.08  4.24    11.08    15.33    18.09    20.92    27.51  2834 1.00
## mu[398]     4.97    0.04  2.06     1.94     3.52     4.64     6.06    10.08  2852 1.00
## mu[399]   205.23    0.23 14.23   177.93   195.66   205.03   214.68   234.30  3956 1.00
## mu[400]     8.10    0.05  2.70     3.85     6.15     7.75     9.65    14.38  2987 1.00
## mu[401]     0.94    0.01  0.73     0.14     0.40     0.73     1.29     2.86  2816 1.00
## mu[402]     5.85    0.04  2.17     2.42     4.32     5.57     7.04    10.81  2407 1.00
## mu[403]     7.19    0.05  2.46     3.35     5.38     6.88     8.71    12.79  2564 1.00
## mu[404]     1.57    0.02  1.01     0.33     0.83     1.35     1.99     4.17  2788 1.00
## mu[405]    33.27    0.09  5.65    22.97    29.37    33.00    36.98    45.36  3884 1.00
## mu[406]    18.65    0.07  4.42    11.06    15.49    18.33    21.34    28.11  3658 1.00
## mu[407]     1.23    0.02  0.82     0.23     0.64     1.04     1.60     3.40  2399 1.00
## mu[408]     3.28    0.03  1.55     1.00     2.09     3.04     4.21     6.86  2774 1.00
## mu[409]     3.93    0.04  1.80     1.34     2.61     3.60     4.95     8.20  2500 1.00
## mu[410]     4.30    0.04  1.87     1.53     2.87     4.04     5.44     8.61  2787 1.00
## mu[411]     2.79    0.03  1.42     0.78     1.74     2.53     3.56     6.16  3049 1.00
## mu[412]     8.41    0.05  2.72     4.10     6.41     8.12    10.02    14.59  2990 1.00
## mu[413]     6.36    0.04  2.36     2.67     4.62     6.06     7.73    11.76  3416 1.00
## mu[414]    11.53    0.06  3.31     6.17     9.13    11.19    13.57    18.59  3472 1.00
## mu[415]    18.95    0.09  4.20    11.67    15.98    18.67    21.54    28.28  2380 1.00
## mu[416]     2.16    0.02  1.25     0.48     1.27     1.90     2.79     5.25  2681 1.00
## mu[417]     1.63    0.02  1.00     0.34     0.92     1.44     2.13     3.95  3048 1.00
## mu[418]     2.57    0.03  1.42     0.68     1.58     2.30     3.21     6.19  2693 1.00
## mu[419]    48.25    0.11  6.73    35.84    43.24    48.00    52.87    61.82  3594 1.00
## mu[420]     6.47    0.04  2.41     2.80     4.64     6.13     8.03    12.02  2904 1.00
## mu[421]     1.05    0.02  0.81     0.17     0.49     0.83     1.40     2.93  2220 1.00
## mu[422]    23.86    0.09  4.62    15.32    20.81    23.69    26.55    33.69  2591 1.00
## mu[423]     4.84    0.04  2.04     1.76     3.36     4.52     6.11     9.44  3112 1.00
## mu[424]     1.54    0.02  1.06     0.27     0.77     1.28     2.04     4.24  2868 1.00
## mu[425]     1.12    0.02  0.81     0.20     0.55     0.91     1.44     3.27  2413 1.00
## mu[426]    11.36    0.05  3.17     6.02     9.06    11.02    13.25    18.34  3337 1.00
## mu[427]     3.22    0.03  1.53     1.01     2.11     3.00     4.05     6.90  2683 1.00
## mu[428]     0.88    0.02  0.75     0.12     0.38     0.69     1.14     2.83  1703 1.00
## mu[429]     1.92    0.02  1.12     0.42     1.06     1.66     2.56     4.75  2498 1.00
## mu[430]     2.27    0.03  1.33     0.52     1.29     2.01     2.90     5.75  2220 1.00
## mu[431]     3.46    0.03  1.66     1.06     2.29     3.20     4.32     7.45  2920 1.00
## mu[432]     1.78    0.02  1.04     0.38     1.02     1.57     2.31     4.32  3478 1.00
## mu[433]     8.67    0.05  2.79     4.14     6.67     8.35    10.37    15.31  3450 1.00
## mu[434]     5.35    0.04  2.07     2.14     3.90     5.09     6.47    10.50  3172 1.00
## mu[435]     7.56    0.04  2.58     3.35     5.64     7.25     9.24    13.29  3302 1.00
## mu[436]     0.74    0.01  0.59     0.11     0.35     0.59     0.95     2.33  1954 1.00
## mu[437]    21.25    0.09  4.39    13.59    18.22    20.69    24.02    30.52  2565 1.00
## mu[438]     7.27    0.04  2.55     3.22     5.41     6.94     8.69    13.19  3251 1.00
## mu[439]     4.27    0.03  1.83     1.61     2.93     3.97     5.28     8.37  2925 1.00
## mu[440]    10.95    0.06  3.19     5.80     8.61    10.66    12.96    18.04  2782 1.00
## mu[441]    14.94    0.07  3.64     8.65    12.43    14.65    17.18    22.77  2856 1.00
## mu[442]     2.14    0.02  1.18     0.50     1.30     1.90     2.71     5.16  2780 1.00
## mu[443]    15.09    0.07  3.64     8.86    12.41    14.86    17.51    22.79  2646 1.00
## mu[444]     6.80    0.04  2.47     2.87     4.94     6.48     8.40    12.23  3241 1.00
## mu[445]     2.31    0.03  1.32     0.57     1.38     2.00     2.93     5.47  2357 1.00
## mu[446]     1.72    0.02  1.12     0.34     0.91     1.49     2.23     4.32  2469 1.00
## mu[447]     1.01    0.02  0.74     0.17     0.49     0.82     1.30     2.87  2210 1.00
## mu[448]     4.59    0.04  2.06     1.62     3.07     4.26     5.71     9.69  2942 1.00
## mu[449]    15.88    0.07  3.82     9.43    13.13    15.53    18.24    23.91  3210 1.00
## mu[450]     2.78    0.03  1.49     0.76     1.68     2.49     3.56     6.45  2255 1.00
## mu[451]     2.04    0.02  1.22     0.49     1.14     1.78     2.62     5.18  2655 1.00
## mu[452]     1.55    0.02  1.00     0.31     0.80     1.29     2.02     4.11  3028 1.00
## mu[453]    13.01    0.07  3.37     7.33    10.49    12.68    15.08    20.20  2209 1.00
## mu[454]     5.65    0.05  2.24     2.29     3.98     5.33     7.01    10.83  2433 1.00
## mu[455]    17.75    0.06  4.12    10.77    14.88    17.41    20.13    27.05  4349 1.00
## mu[456]     8.45    0.05  2.87     3.92     6.35     8.06    10.15    15.03  3205 1.00
## mu[457]     3.29    0.03  1.62     0.98     2.09     3.02     4.12     7.19  3431 1.00
## mu[458]     2.05    0.02  1.13     0.51     1.21     1.85     2.63     4.95  2585 1.00
## mu[459]    39.42    0.12  6.27    27.95    35.25    38.88    43.26    53.24  2552 1.00
## mu[460]     5.86    0.04  2.27     2.33     4.18     5.52     7.21    11.03  2829 1.00
## mu[461]     3.54    0.03  1.64     1.18     2.38     3.26     4.47     7.37  3130 1.00
## mu[462]     2.61    0.02  1.45     0.69     1.56     2.30     3.32     6.29  3622 1.00
## mu[463]     2.87    0.03  1.48     0.84     1.80     2.62     3.65     6.58  2839 1.00
## mu[464]    11.06    0.06  3.33     5.67     8.65    10.72    13.01    18.38  3249 1.00
## mu[465]     2.12    0.02  1.16     0.54     1.25     1.93     2.75     4.98  2757 1.00
## mu[466]    46.17    0.12  6.86    33.83    41.38    45.87    50.64    61.08  3485 1.00
## mu[467]     2.11    0.02  1.29     0.46     1.21     1.84     2.67     5.61  2952 1.00
## mu[468]    15.72    0.08  4.05     8.95    12.80    15.23    18.36    24.43  2624 1.00
## mu[469]    15.74    0.07  3.90     9.07    12.90    15.44    18.15    24.30  3121 1.00
## mu[470]     9.31    0.05  2.88     4.67     7.17     8.98    11.04    15.64  3489 1.00
## mu[471]     0.71    0.01  0.61     0.09     0.30     0.53     0.90     2.37  1994 1.00
## mu[472]    43.60    0.10  6.86    32.11    38.64    43.03    48.01    57.96  4310 1.00
## mu[473]     3.24    0.03  1.57     0.96     2.09     2.97     4.14     6.86  2942 1.00
## mu[474]     8.02    0.05  2.64     3.80     6.12     7.66     9.56    14.18  2943 1.00
## mu[475]     9.42    0.05  3.04     4.62     7.26     9.05    11.29    16.14  3329 1.00
## mu[476]    17.04    0.07  4.23    10.04    13.99    16.64    19.74    26.12  4098 1.00
## mu[477]     0.40    0.01  0.40     0.04     0.15     0.28     0.50     1.39  1703 1.00
## mu[478]     1.07    0.02  0.71     0.21     0.55     0.90     1.41     2.87  1988 1.00
## mu[479]     6.52    0.04  2.33     2.86     4.80     6.24     7.87    11.83  2761 1.00
## mu[480]     2.42    0.03  1.32     0.64     1.45     2.17     3.08     5.59  2565 1.00
## mu[481]    55.60    0.13  7.20    42.82    50.84    55.38    60.00    70.72  3159 1.00
## mu[482]    15.16    0.06  3.58     9.02    12.54    14.89    17.48    22.62  3567 1.00
## mu[483]     4.08    0.03  1.96     1.31     2.68     3.75     5.15     8.69  3260 1.00
## mu[484]    10.60    0.06  3.23     5.30     8.30    10.26    12.55    17.97  3092 1.00
## mu[485]    18.18    0.07  4.29    10.68    15.19    18.01    20.78    27.55  3548 1.00
## mu[486]    22.83    0.08  4.46    14.99    19.78    22.48    25.61    32.47  2853 1.00
## mu[487]     2.79    0.03  1.45     0.78     1.73     2.55     3.53     6.35  2150 1.00
## mu[488]     7.67    0.04  2.58     3.66     5.88     7.34     9.24    13.58  3971 1.00
## mu[489]     3.84    0.03  1.83     1.22     2.52     3.53     4.79     8.40  3536 1.00
## mu[490]     3.07    0.03  1.57     0.88     1.90     2.86     3.89     7.07  3553 1.00
## mu[491]     7.81    0.05  2.55     3.78     5.95     7.42     9.39    13.58  2337 1.00
## mu[492]    52.72    0.13  7.22    40.10    47.66    52.30    57.46    68.13  2985 1.00
## mu[493]     4.55    0.03  1.98     1.55     3.09     4.26     5.62     9.20  3313 1.00
## mu[494]     1.43    0.02  0.92     0.28     0.75     1.22     1.87     3.83  2444 1.00
## mu[495]     1.75    0.02  1.15     0.35     0.94     1.50     2.27     4.44  2718 1.00
## mu[496]     1.26    0.02  0.90     0.20     0.63     1.05     1.65     3.82  2293 1.00
## mu[497]     0.86    0.01  0.63     0.13     0.40     0.69     1.16     2.43  2543 1.00
## mu[498]     2.39    0.03  1.37     0.57     1.41     2.14     3.03     5.90  2983 1.00
## mu[499]     1.13    0.02  0.79     0.18     0.58     0.94     1.52     3.09  2495 1.00
## mu[500]     1.26    0.02  0.87     0.22     0.63     1.05     1.60     3.64  2646 1.00
## a[1]        1.54    0.00  0.07     1.40     1.49     1.54     1.59     1.69  1487 1.00
## a[2]        1.28    0.00  0.08     1.12     1.23     1.28     1.33     1.43  1459 1.00
## b           0.81    0.00  0.05     0.71     0.78     0.81     0.85     0.92  2683 1.00
## c[1]        0.15    0.00  0.07     0.02     0.11     0.15     0.20     0.28  2168 1.00
## c[2]       -0.62    0.00  0.09    -0.80    -0.68    -0.62    -0.55    -0.43  1256 1.00
## sigma       1.04    0.00  0.05     0.95     1.01     1.04     1.07     1.14  1136 1.00
## lp__    15065.69    0.92 18.24 15028.83 15054.00 15066.51 15078.23 15100.35   395 1.01
## 
## Samples were drawn using NUTS(diag_e) at Mon Nov 25 21:34:21 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

plot of chunk trace_fullmodel

How’d we do now?

Here are posterior distributions from the full model, with the true values in red. plot of chunk true_fit

Posterior predictive simulations, again

Now we cover the true data

plot of chunk plot_post_sims2

Now we cover the true data

plot of chunk plot_post_sims3